Discrete Conformal Mapping	Mean Curvature Flow	Conformalized MCF	Future Work

Conformalized Mean Curvature Flow

Ka Wai (Karry) Wong

Barrett Lectures, UTK

May 29, 2018

Introduction	Discrete Conformal Mapping	Mean Curvature Flow	Conformalized MCF	Future Work

Shape Comparison

- Complex shapes in nature: human brains, proteins, bones, etc.
- Application: medicine, anthropology, image processing, etc.
- Goal: Compare any two different compact genus-zero surfaces without boundary (i.e. 2-sphere S²)

Discrete Conformal Mapping

Mean Curvature Flow 000000 Conformalized MCF

Future Work

Shape Comparison in Biology

Figure: Source: Hass & Koehl

One possible way: Conformal Maps diagram from Hass & Koehl A framework proposed by Hass and Koehl: comparison of surfaces

Figure: Hass, Koehl "Comparing shapes of genus-zero surfaces" 2017

Why Conformal Mapping?

Possible actions on tangent plane

 smooth
 ⊃
 conformal ⊃
 isometric

 translate
 translate
 translate
 translate

 rotate
 rotate
 rotate
 rotate

 scale
 scale
 scale
 scale

 shear
 scale
 scale
 scale

Figure: Wikipedia

- Given Riemann surfaces M and two metrics g, \tilde{g} on M. We say \tilde{g}, g are conformally equivalent if \exists positive $\rho \in C^{\infty}(M)$ such that $\tilde{g} = \rho g$.
- Given two surfaces (M, g), (N, h). $f: M \to N$ is a conformal map if \exists positive $\tau \in C^{\infty}(M)$ such that the pullback metric $f^*(h) = \tau g$.

Poincaré-Klein-Koebe Uniformization theorem

Theorem

A closed **genus-zero** Riemann surface M is conformally equivalent to the Riemann sphere $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$

Restatement:

Given closed genus-zero Riemann surface (M, g), there exists a metric \tilde{g} conformal to g and \tilde{g} is of **constant Gaussian curvature** 1.

Figure: By Gary Choi (Harvard) on mathworks

WHY on a sphere?

(i). Canonical
domain for data
comparison
(ii). 6 deg. freedom
left: Möbius
transform *PSL*(2, C)

Introduction	Discrete Conformal Mapping	Mean Curvature Flow	Conformalized MCF	Future Work	
Discusts Conformal Magning					

Discrete Conformal Mapping

- Surface representation a triplet $\mathcal{M} := (V_{1}, E_{2}, T_{2})$
- ▶ Discrete metric $\ell: E \to \mathbb{R}_{>0}$ assigns positive value to edges, i.e. $\ell(e_{ij}) = \ell_{ij}$ such that all triangle inequalities holds for $t_{ijk} \in T$.
- ▶ ℓ and $\tilde{\ell}$ on *M* are (*discrete*) conformally equivalent if $\exists u: V \to \mathbb{R}$ such that for $v_i, v_j \in V$, $\tilde{\ell}_{ij} = e^{\frac{u(v_i)+u(v_j)}{2}} \ell_{ij}$.

Figure: A smooth Spot

Figure: A discretized Spot

Future Work

Discrete Conformal Mapping: framework revisited

Setting

- Given discrete surface M = (V, E, T) in \mathbb{R}^3 .
- Use induced metric ℓ from \mathbb{R}^3 .
- Want an algorithm to give map c: V → R³ with output (V', E', T'), V' lie on S² ⊂ R³.
- Want that new induced metric ℓ is conformal to initial ℓ.
- Uniformization Theorem: Such (continuous) conformal map exists!

Problem

A **robust** discrete conformal mapping algorithm applicable on a wide range of shapes **doesn't exist yet**!

Figure: Y. Wang (ASU)

Already tried - Discrete Ricci Flow and Bobenko's Method

Intrinsic geometric flow is an evolution of Riemannian metric

• Discrete Ricci Flow: Distribute total curvature (4π) evenly.

Chow, Luo "Combinatorial Ricci flows on surfaces" 2003 Jin, Kim, Luo, Gu "Discrete Surface Ricci Flow" 2008

- Drawback: Restrictive, Mesh degeneracy
- Bobenko's Method: Minimize convex energy functional
 Springborn, Schöder, Pinkall "Conformal Equivalence of Triangle Meshes" 2008
 Bobenko, Pinkall, Springborn "Discrete conformal maps and ideal hyperbolic polyhedra" 2010
 - Drawback: Triangle inequalities might fail

Discrete Conformal Mapping	Mean Curvature Flow	Conformalized MCF	Future Work
	•00000		

Mean Curvature Flow (MCF)

Let $\Phi_t \colon M \to \mathbb{R}^3$ be a smooth family of immersions and $g_t(\cdot, \cdot)$ be the metric induced by Φ_t at time *t*. Φ_t is a solution to the MCF if

$$\frac{\partial \Phi_t}{\partial t} = \Delta_{g_t} \Phi_t (= -2H_t \hat{N}_t) \tag{1}$$

 $H_t(p)$:scalar mean curvature, $\hat{N}_t(p)$: **outward** unit surface normal. Δ_{g_t} : Laplace-Beltrami operator defined w.r.t. g_t .

Singularities form when surface collapse at a point ($\kappa(p) \rightarrow \infty$). Hence MCF is not conformal in nature.

Figure: Alsing, Paul M. et al. "Simplicial Ricci Flow" 2014

Mean Curvature Flow

Strategy: From MCF to Conformal Map

Kazhdan, Solomon, Ben-Chen "Can Mean-Curvature Flow be Modified to be Non-singular?" 2012:

- 1. Apply finite-elements discretization to MCF
- 2. Identify numerical instabilities
- 3. Propose modified flow that resolves instabilities
- 4. Convergence of the new flow?

Figure: M. Kazhdan, J. Solomon, M. Ben-Chen

Discrete Conformal Mapping	Mean Curvature Flow	Conformalized MCF	Future Work
	00000		

1. Finite-elements Method (FEM)

Express immersion

$$\Phi_t(\boldsymbol{p}) = \sum_{i=1}^N x_i(t) B_i(\boldsymbol{p})$$

where $\{B_1, B_2, \dots B_N\}$: $M \to \mathbb{R}$ is a set of function basis and a set of coefficient vectors $X(t) = \{x_1(t), x_2(t), \dots, x_N(t)\} \subset \mathbb{R}^3$.

Warning: possible $\Phi_t \notin \text{span}\{B_1, \dots, B_N\}$! Using Galerkin formulation:

$$\int_{M} \left(\frac{\partial \Phi_{t}}{\partial t} \cdot B_{j} \right) dA_{t} = \int_{M} \left(\Delta_{t} \Phi_{t} \cdot B_{j} \right) dA_{t} \quad \forall 1 \leq i \leq N$$

Apply Backward Euler method to discretize $\frac{\partial x_i}{\partial t} \approx \frac{x_i(t+\tau) - x_i(t)}{\tau}$.

Discrete Conformal Mapping	Mean Curvature Flow	Conformalized MCF	Future Work
	000000		

1. Finite-elements Method (Method)

When all the dust settles...

$$\left(D^{t} - \tau L^{t}\right) X(t + \tau) = D^{t} X(t)$$
(2)

where $D^t := [D_{ij}^t], L^t := [L_{ij}^t]$ are $N \times N$ matrices.

$$D_{ij}^t := \int_M B_i B_j \, dA_t, \quad L_{ij}^t := - \int_M g_t(\nabla_t B_i, \nabla_t B_j) \, dA_t$$

We solve a linear system Ax = b relating $X(t + \tau)$ to X(t). Use "Hat Basis", piecewise linear function basis $B_i: V \to \mathbb{R}$

$$m{B}_i(m{v}_j) = \delta_{ij}$$
 Delta functional
 $\Rightarrow \Phi_t(m{v}_j) = \sum_i x_i(t) \delta_{ij} = x_j(t)$

Discrete Conformal Mapping	Mean Curvature Flow	Conformalized MCF	Future Work
	000000		

An Excursion into Differential Geometry

Linear map $\Lambda: T\Phi_0(p) \mapsto T\Phi_1(p)$, maps orthogonal vectors $\partial_{v_1}, \partial_{v_2} \in T\Phi_0(p)$ to two corresponding vectors, $\partial_{w_1}, \partial_{w_2} \in T\Phi_1(p)$ with $\partial_{w_1} \perp \partial_{w_2}$, i.e.

$$\Lambda := d\Phi_1 \circ d\Phi_0^{-1} \quad \Rightarrow \quad \Lambda \partial_{v_i} = \lambda_i \partial_{w_i}, \quad i = 1, 2$$
(3)

where stretch directions ∂_{w_i} , stretch factors λ_i are time dependent.

Figure: cactus: initial

Figure: cactus: MCF 10 steps

Introduction	Discrete Conformal Mapping	Mean Curvature Flow	Conformalized MCF	Future Work

2. Numerical Instabilities

Express
$$D^t, L^t$$
 using $dA_t = \sqrt{|g_t|} |g_0|^{-1} dA_0 = \lambda_1 \lambda_2 dA_0$:

$$D_{ij}^{t} = \int_{M} B_{i} \cdot B_{j} (\lambda_{1}\lambda_{2}) dA_{0}$$

$$L_{ij}^{t} = -\int_{M} \left(\frac{\lambda_{2}}{\lambda_{1}} \frac{\partial B_{i}}{\partial v_{1}} \frac{\partial B_{j}}{\partial v_{1}} + \frac{\lambda_{1}}{\lambda_{2}} \frac{\partial B_{i}}{\partial v_{2}} \frac{\partial B_{j}}{\partial v_{2}} \right) dA_{0}$$
(4)
(5)

Where's Instability? Anisotropic stretching (different magnitudes of stretching along v_1, v_2) \Rightarrow either $\frac{\lambda_2}{\lambda_1}$ or $\frac{\lambda_1}{\lambda_2}$ escapes to infinity

To conclude, L^t might blow up when singularies form!

Discrete Conformal Mapping	Mean Curvature Flow	Conformalized MCF	Future Work
		00000	

3. Conformalized Mean Curvature Flow (cMCF)

Idea: replace metric g_t by the closest metric that is conformal to g_0 . Let \tilde{g}_t be "conformalized" metric and $\tilde{\lambda}_1, \tilde{\lambda}_2$ new stretch factors.

$$\tilde{g}_t := \sqrt{|g_t| |g_0|^{-1}} g_0$$
 (6)

• \tilde{g}_t is conformal to g_0 and $|\tilde{g}_t| = |g_t|$

$$\bullet \quad \tilde{\lambda}_1 = \tilde{\lambda}_2 = \sqrt{\lambda_1 \lambda_2} \Rightarrow \tilde{\lambda}_1 \tilde{\lambda}_2 = \lambda_1 \lambda_2$$

• $\tilde{D}_{ij}^t = D_{ij}^t$ but $\tilde{L}^t = L^0$ and hence \tilde{L}^t is independent of time.

Figure: Gargoyle under cMCF

Discrete Conformal Mapping	Mean Curvature Flow	Conformalized MCF	Future Work
		00000	

3. Conformalized Mean Curvature Flow (cMCF)

Definition

Given \mathcal{M}, g_0 . Let $\Phi_t \colon \mathcal{M} \to \mathbb{R}^3$ be a smooth family of immersions and $g_t(\cdot, \cdot)$ be the induced metric. Φ_t is a solution to cMCF if:

$$\frac{\partial \Phi_t}{\partial t} = \sqrt{|g_t|^{-1} |g_0|} \Delta_{g_0} \Phi_t \tag{7}$$

- Laplace-Beltrami operator stays the same.
- ► If Φ_t is conformal with respect to g_0 , then $\Delta_{g_t} = \sqrt{|g_t|^{-1} |g_0|} \Delta_{g_0}$. Recover traditional MCF from cMCF!
- Discretizing eq. (7) gives a varying D^t but a fixed L^t .

cMCF Algorithm by Prof. Michael Kazhdan available at:

www.cs.jhu.edu/~misha/Code/ConformalizedMCF/Version2/

Discrete Conformal Mapping	Mean Curvature Flow	Conformalized MCF	Future Wor
		00000	

3. cMCF: Numerical Results

Spot is back! Step size 0.0001

Figure: Spot: Initial Figure: cMCF - 10 steps Figure: cMCF - 500 steps

Spot brings a new friend - dinosaur |V| = 9,794, |T| = 19,584...

Figure: cMCF - 10 steps Figure: cMCF - 2000 steps

Figure: Dinosaur: Initial

Discrete Conformal Mapping	Mean Curvature Flow	Conformalized MCF	Future Work
		00000	

3. cMCF: Numerical Results

Sophisticated Mesh - Armadillo!!! |V| = 172,974, |T| = 345,944

Figure: Armadillo: Initial

Figure: cMCF - 500 steps

	Initial	500 steps
Area	38129	93009
Volume	237977	2.63748e+06
Sphericity	0.487063	0.992549

Discrete Conformal Mapping	Mean Curvature Flow	Conformalized MCF	Future Work
		00000	

3. cMCF: Numerical Results

Back to application - Human Brain |V| = 65,538, |T| = 131,072

Figure: Brain: Initial

Figure: cMCF - 500 steps

Introduction	Discrete Conformal Mapping	Mean Curvature Flow	Conformalized MCF	Future Work ●000

4. cMCF: Convergence

Open question in case of genus-zero surfaces: Φ_t converges under cMCF? Existence of a counter-example? Kazhdan, Solomon, and Ben-Chen proved:

Proposition

If cMCF converges, i.e. $\Phi_t \xrightarrow[t \to \infty]{} \Phi_{\infty}$,

then Φ_∞ is a map onto the sphere if and only if Φ_∞ is conformal

Figure: Source: M. Kazhdan, J. Solomon, M. Ben-Chen

Introduction	Discrete Conformal Mapping	Mean Curvature Flow	Conformalized MCF	Future Work o●oo

Math journey continues...

- Surfaces with higher genus? Known: limit map is not conformal.
 - No embeddings of closed surfaces with higher genus that are uniformly scaled by traditional MCF.

an magnany of solution of an sola chen's can mean can raine rists of monified to be from singular.

Figure: Source: M. Kazhdan, J. Solomon, M. Ben-Chen

- Surfaces with boundary?
- Use defining function to reduce MCF into one equation. An equivalent formulation of cMCF?

	Discrete Conformal Mapping	Mean Curvature Flow	Conformalized MCF	Future Work
0000	0000	000000	00000	0000

CS journey also continues...

- Existing algorithm not applicable on "raw" meshes from real brain scanning.
- My own implementation of Kazhdan's algorithm in OpenMesh. Parallel Computing?

Figure: Half Brain: View 1

Figure: Half Brain: View 2

Discrete Conformal Mapping

Mean Curvature Flow

Conformalized MCF

Future Work

An amazing team at UC Davis

Figure: Prof. Joel Hass, source: IAS Figure: Prof. Patrice Koehl, source: UCD

Figure: Yanwen Luo, source: UCD

Figure: Karry Wong

Thank You!