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Abstract

The first part of this thesis studies a modified version of mean curvature flow, the “conformalized

mean curvature flow” (cMCF), developed by Kazhdan, Solomon, and Ben-Chen. The cMCF is a

conformal mapping algorithm but it runs into numerical issues when it is applied on meshes with

protrusions. We improve the cMCF with an initialization step which first maps the initial mesh

onto a sphere. This initialization step is shown to improve the performance of cMCF so that it can

be applied on meshes with long protrusions. More importantly, we give the first algorithm named

“Sphericalized cMCF” to construct a homotopy from a degree one map to a homeomorphism from

a unit sphere onto a unit sphere. We provide results from numerical experiments of applying

this algorithm to closed surfaces of genus zero that are embedded in R3, on which we construct a

homotopy from a degree one map to a conformal homeomorphism onto a unit sphere.

The second part of this thesis focuses on my work in x-ray emission tomography at the Lawrence

Livermore National Laboratory. This project is conducted over eighteen months of a student

internship and within the framework of the inertial confinement fusion (ICF) experiments performed

at the National Ignition Facility (NIF). We present a novel approach to reconstruct the 3D electron

temperature distribution of ICF hotspots. Using very limited number of 2D x-ray projection images,

we reconstruct 3D x-ray emission distributions of an ICF hotspot from different x-ray energy

channels ranging from 20 to 30 keV. The x-ray input images are processed using the algebraic

reconstruction technique (ART) to reconstruct 3D x-ray emission distributions in different energy

channels, which can characterize and compare the thermophysical states of the fusion plasma such

as its electron temperature. We compute the 3D electron temperature using the energy channel

ratios. We present both synthetic and experimental results showing high accuracy and applicability

of our method on different complex hotspot geometries.
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CHAPTER 0

Introduction

This dissertation consists of results from two different projects that the author has completed.

The two projects are independent from each other. The first two chapters focus on conformal

parametrizations for surfaces of genus zero using the conformalized mean curvature flow (cMCF).

The third chapter is on computer tomography to reconstruct a three-dimensional distribution using

very limited two-dimensional projections.

Chapter 1 provides an overview on the related works in surface parametrizations and their

applications. Then we study the mathematical foundations of the cMCF and its limitations in

practice. In Chapter 2, we introduce an initialization step to improve the cMCF performance and

present meshes that can be processed by our enhanced version of cMCF.

Chapter 3 describes our works on the 3D reconstruction of thermonuclear plasma in nuclear

fusion hotspot. We give a brief introduction to the inertial confinement fusion experiment at

the National Ignition Facility. Then we explain the motivation, our algorithm, the underlying

mathematical theory, and the main results of our project.
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CHAPTER 1

Surface Parametrizations

Complex shapes arise everywhere in nature. The human brain, proteins, bones, and leaves all

exhibit non-trivial geometric structures that might explain their biological functions. Therefore it

is of great value to quantify the geometric differences between two complex shapes.

1.1. Background and overview on conformal maps in the continuous setting

Parametrization of discrete surfaces is an important and widely studied topic in computational

mathematics and computer graphics. It has many important applications in medical imaging,

morphology, computer graphics and visions, and related fields. Conformal parametrization of a

triangle mesh is to compute a correspondence between a triangulated surface patch and a domain

in a canonical space through conformal mappings. Since closed manifold genus-zero meshes are

topologically equivalent to a sphere, a sphere becomes a natural choice as the canonical space for

our conformal maps.

1.1.1. Background. To give the background, we would like to elaborate on the statement

above mathematically and describe the motivation behind our works. To do so, we need to state

a few fundamental results from topology and differential geometry, which can then lead us to give

a precise definition of a conformal map between smooth surfaces. Here we define a surface S to

be a 2-dimensional smooth manifold. S can be described by using a collection of coordinate charts

{(Ui, φ)} called an atlas, where each Ui is a open subset on S and their union covers the entire S.

Each corresponding map φi is differentiable taking Ui into some open subset in R2. A transition

map φij := φj ◦ φ−1i takes point between overlapping charts. We will come back to use these

concepts to define conformal maps.

The genus g of a connected, orientable surface can be defined as the maximum number of

nonintersecting simple closed curves that can be on S and do not collectively disconnect S. Equiv-

alently, the genus can also be defined as the number of handles on it. Roughly speaking, genus is

the number of “holes” a surface has, for example a sphere has genus zero, a torus has genus one,
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a torus with n holes (a n-torus) has genus n. Genus of a closed surface S is related to its Euler

characteristic χ(S) via

χ(Sg) = 2− 2g

This follows that a sphere has Euler characteristics two, a torus zero, and a n-torus 2 − 2n. We

assume our surface S to be connected, orientable, and closed, i.e. compact and without no boundary.

We state the classification theorem for this kind of surface.

Theorem 1.1.1. Every connect, orientable, closed surface S is homeomorphic to either a sphere

or g-torus for some g ≥ 1.

We look at the geometry of surfaces in R3. So an immersion of surface S into R3 can give

a Riemanian metric g induced on S from the flat metric in R3. The Riemannian metric g at a

point p on S is a positive-definite inner product defined on the tangent space TpS. We can now

define with g concepts such as length of curves lying on S, angles between tangent vectors in TpS,

and curvature at points on S. Although many other Riemannian metrics can be defined on S,

depending on our choice of the inner product, we use here the Riemannian metric induced from

the flat metric in R3.

The celebrated Gauss-Bonnet theorem connects the topology and the geometry of surfaces. We

state this theorem for the case of closed orientable surfaces.

Theorem 1.1.2. Let K be the Gaussian curvature of a closed orientable surface S and dA the

area measure of S, ∫ ∫
S
KdA = 2πχ(S)

The curvature on the left hand side is geometrical whereas the Euler characteristic on the right

hand side is topological. The above theorem implies that the total curvature of S remains constant

regardless of any distortion or change of curvature on S.

1.1.2. Conformal maps between surfaces. Now we are ready to define the notions of

conformal mapping and the related concepts on smooth surfaces. Recall that a function f : U → C

with (x, y)→ (u, v) is holomorphic if it satisfies the Cauchy-Riemann equation:

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
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f is biholomorphic if f is holomorphic, one-to-one, and onto, and its inverse is also holomorphic.

A Riemann surface is a 1-dimensional complex manifold with complex holomorphic transition

functions. Indeed all orientable surfaces are Riemann surfaces. Suppose S and S̃ are two Riemann

surfaces, these two surfaces S and S̃ are conformal equivalent if there exists a biholomorphic map

f that maps from S to S̃.

We denote a Riemann surface S equipped with a Riemannian metric g by (S, g). Suppose there

is another Riemannian metric g̃ on the same surface S. The two metrics g and g̃ are conformal if

there exists a positive smooth function ρ ∈ C∞(S) such that g̃ = ρg. ρ is called the conformal factor.

Analogously, given two Riemann surfaces (S, g) and (S̃, g̃) and a map f : S → S̃. f is a conformal

map if there exists a positive smooth function ρ ∈ C∞(S) such that the pullback metric f∗(g̃) = ρg.

An intuitive way of picturing the conformal map f is that its pushforward f∗ : Tp(S)→ Tp(S̃) is an

angle-preserving map, i.e. for any two tangent vectors v1, v2 ∈ Tp(S), the angle between v1, v2 on

Tp(S) is the same as the angle between the pushforward vectors f∗(v1), f∗(v2) on Tp(S̃). And the

function ρ in the definitions above describes a uniform scaling of the tangent plane Tp(S).

One basic but fundamental result of conformal maps is the Riemann mapping theorem from

complex analysis.

Theorem 1.1.3. Let U be a non-empty simply connected, proper open subset in C, then there

exists a biholomorphic map f from U onto the open unit disk.

The celebrated Uniformization Theorem by Poincaré, Klein, and Koebe generalizes the Riemann

mapping theorem and classifies simply connected Riemann surfaces using conformal equivalence.

Theorem 1.1.4. A simply connected Riemann surface is conformally equivalent to one of the

following Riemann surfaces:

• the unit open disk D

• the complex plane C

• the Riemann sphere Ĉ = C ∪ {∞}

In terms of conformal equivalence of metrics, the Uniformation Theorem can be restated as

follows.

Theorem 1.1.5. Let S be a compact smooth two dimensional Riemann surface with Riemannian

metric g. The metric g is conformally equivalent to a metric g̃ with constant Gaussian curvature,
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either 1, 0 or −1, depending on the topology of S. The sign of the constant curvature of g̃ is equal

to the sign of the Euler characteristics χ(S) of the surface. Furthermore, g̃ is unique if χ(S) is

negative.

One important consequence of the Uniformation Theorem is that the two surfaces share the

same conformal structure (surface with conformal transition functions) if they can be conformally

mapped. Also, this theorem suggests a canonical domain, i.e. with constant curvature everywhere,

for the conformal map depending on the topology of a given surface. For example, given closed

surfaces of genus-zero and genus-one , we would like to construct conformal maps from them to a

2-sphere and a torus respectively. But the conformal maps constructed in these two cases are not

necessarily unique as their Euler characteristics are 2 and 0 respectively. For our works in chapter

2, we will focus on the implication of the Uniformization Theorem in case of genus-zero surfaces,

that is, [Ber72]

Theorem 1.1.6. Given any smooth genus zero surface S, there is always a conformal diffeo-

morphism from S to S2, a unit 2-sphere in R3.

Given a genus-zero surface immersed in R3, we would like to compute a conformal map onto a

round 2-sphere.

On a side note, in the space of smooth mappings between surfaces (not necessarily of genus-

zero), although the set of conformal maps form a larger subset and hence more flexible than the

set of isometric maps (such as translation and rotation), conformal maps are still restrictive since

two random metrics with nontrivial topologies are rarely conformal to each other. In this case,

given an arbitrary diffeomorphism f between two surfaces, one idea is to define an energy of f

which is minimized when f is conformal. If not minimized, we then use this energy as a measure

to quantify the deviation of f from being conformal. This lead to the following defintions. A

map f : (S1, g1)→ (S2, g2) is a harmonic map if it is a critical point of its Dirichlet energy, which

describes the global distortion of f , defined by

ED(f) =
1

2

∫
S1

〈df, df〉dA

5



where the differential df can be seen as a section to the bundle T ∗S1 ⊗ TS2. For example, in a

simple case where D is a open disk and f = (f1, f2, · · · , fm) : D ⊂ Rn → Rm,

ED(f) =
1

2

∫
D
|df |2dA =

1

2

m∑
i=1

∫
D
|∇fi|2dA.

In this case, by calculus of variation, it can be shown that the minimizer of Dirichlet energy satisfies

the Laplace equation inside D, i.e. ∆f = 0. Moreover,

Proposition 1.1.1. For any conformal map ϕ : S1 → S1, ED(ϕ◦f) = ED(f), i.e. the Dirichlet

energy ED is conformally invariant.

Proof. ϕ is conformal on S1 implies that there exists a λ ∈ C∞(S1) such that g1 7→ λg1.

Therefore

ED(f) =
1

2

∫
S1

〈d(ϕ ◦ f), d(ϕ ◦ f)〉dA =
∑
i,j

∫
S1

1

λ
gij1 ∂xif∂xjf

√
|λg1| dxidxj

Since surface S1 is two dimensional,
√
|λg1| =

√
λ2|g1| = λ

√
|g1|, the conformal factor λ and its

reciprocal cancel out in above expression. Hence, ED(ϕ ◦ f) = ED(f). �

In the case of mappings between general surfaces, a natural question is the existence and

uniqueness of a harmonic map. A overview on these results can found be in [EL95]. Moreover,

harmonic maps are equivalent to conformal maps for closed genus-zero surfaces. [SY97] Therefore,

our project is equivalent to the computation of harmonic maps on closed genus-zero surfaces.

Here we state a fundamental result, the Radó–Kneser–Choquet theorem, concerning harmonic

mappings of a unit disk onto convex regions on a plane [Dur04].

Theorem 1.1.7. ( [Dur04] section 3.1) Let Ω ⊂ C be a bounded convex region whose boundary

is a Jordan curve Γ, i.e. a plane simple closed curve. Let ϕ be a homeomorphism of a unit circle

{|z| = 1} onto Γ. Then the harmonic extension of ϕ, defined by the Poisson integral formula,

f(z) =
1

2π

∫ 2π

0

1− |z|2
|eit − z|2ϕ(eit) dt

is one-to-one in the unit disk D := {|z| < 1} and defines a harmonic map of the unit disk onto Ω.

In general, each homeomorphism ϕ of the unit circle ∂D onto Γ has a unique harmonic exten-

sion to the unit disk D, defined by the Poisson integral formula. So the above theorem states a
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remarkable fact that if Ω is convex, then this harmonic extension is always one-to-one and it maps

the unit disk D harmonically onto a convex region bounded by Γ. So we can summarize the above

theorem as follows

Theorem 1.1.8. ( [Dur04] section 3.1) Suppose ϕ : D → R2 is a harmonic mapping which

maps the boundary ∂D homeomorphically into the boundary ∂Ω of some convex region Ω ⊂ R2.

Then ϕ is one-to-one.

This theorem is closely related to the computation of discrete harmonic maps on triangulated

surfaces via the Tutte embedding, which will be stated and elaborated in subsequent sections.

1.1.3. Motivations for conformal parameterizations of genus-zero surfaces. A closely

related question that motivates the conformal parametrizations of genus-zero surfaces is the shape

comparison of such surfaces. One possible way of comparing shapes is introduced by Hass and

Koehl [HK17], in which they search for a conformal map f from one surface (S1, g1) to the other

(S2, g2) that minimizes a symmetric distortion energy defined by

Esd(f) =

√∫
S1

(1− λf )2 dA1

where λf is the conformal factor associated to the conformal map f , i.e. f∗(g2) = λfg1. Abstractly

speaking, Esd(f) measures the deviation of the map f from being an isometry between S1, S2.

In addition, in the space of shapes of genus zero surfaces S, they defined a distance function

dsd : S × S → R+ using the minimal symmetric distortion energy, i.e.

dsd(S1, S2) = inf{Esd(f)|f : (S1, g1)→ (S2, g2) is a conformal diffeomorphism}

and showed that dsd defines a metric on S [HK17].

In implementation as shown in Figure (1.1), they first contruct two conformal maps c1, c2

warping surfaces S1, S2 ⊂ R3 onto the unit 2-sphere S2 respectively. The Uniformization Theorem

guarantees the existence of these maps. Then a globally optimal conformal map m : S2 → S2 is

chosen such that the conformal map f := c−12 ◦m ◦ c−11 has the minimal associated energy Esd(f).

Note that m belongs to the space of conformal diffeomorphisms from S2 to itself, which forms

the projective special linear group PSL(2,C) sometimes called the Möbius group and is a six real-

dimensional space. Hence this framework reduces the shape comparison problem into an energy

7



minimization problem over a six dimensional space. Hass and Koehl applied this framework to

analyze roundness of proteins, brain surface mapping, comparison of animal bones, etc [KH14],

[HK14], [HK15].

However, one key challenge in the implementation of the above framework is to have an estab-

lished and robust discrete conformal mapping algorithm that maps the vertices of the given discrete

surfaces S1, S2 ⊂ R3 onto S2. An algorithm is established in a sense that it is applicable on a wide

range of shapes, and robust in the sense that any moderate distortions in the input mesh does

not much affect the algorithm’s efficiency. The standard approach of constructing such a map is

to use a geometric flow which can be intrinsic or extrinsic. While an intrinsic geometric flow is

an evolution of a Riemannian metric (e.g. Ricci flow), an extrinsic geometric flow is an evolution

of an immersion of a manifold into Euclidean space (e.g. mean curvature flow). Hass and Koehl

used in their implementation the method proposed by Springborn et al. [SSP08] and adopted

the notion of discrete conformal equivalence proposed by Springborn et al. [BPS15]. This notion

mimics the definition of conformal equivalence for smooth surfaces. Using this notion, the problem

of “flattening” a given mesh discretely conformally can be solved by minimizing a convex energy

functional describing the conformality of the given mesh. We refer the reader to these papers for a

full description and the drawback of this approach will be discussed in the subsequent section.

One possible generalization of the method by Hass and Koehl to higher genus surface has been

done using quasi-conformal maps [Luo19].

1.1.4. Shape space. A key idea mentioned in the previous section is to apply a certain geo-

metric flow on a surface to obtain its conformal parametrization. A geometric flow is defined using

parabolic partial differential equations and it can be understood as a gradient flow of functionals

defined in a Riemannian manifold. The conformalized mean curvature flow, introduced in subse-

quent sections, is used for evolving a shape to a sphere to attain its conformal parametrization

on a sphere. In a continuous case, this evolution process can be seen as a path connecting the

initial shape to a sphere in the space of shapes, whose direction (derivative of the path) is given

by the equation of the geometric flow. We would like to give a rigorous mathematical definition

for the shape space and state that it has a differentiable structure such that taking derivative is

well-justified.
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Figure 1.1. Globally optimal conformal mapping, source [HK14]

Let S be a 2-dimensional manifold without boundary. We use C∞(S,R3) to denote the set of

all smooth functions from S into R3. An immersion of S into R3 refers to a function ι ∈ C∞(S,R3)

such that the differential dι from the tangent space TpS to Tι(p)R3 is injective for all p ∈ S and a

embedding of S into R3 is an immersion ι that is a homeomorphism onto its image. Our framework

can be defined using the following spaces of functions:

Emb(S,R3) ⊂ Imm(S,R3) ⊂ C∞(S,R3)

where Emb(S,R3), Imm(S,R3) denote the set of all possible embeddings and immersions of S into

R3 respectively.

Theorem 1.1.9. [KM97] The spaces Imm(S,R3) and Emb(S,R3) are Fréchet manifolds.

Parametrized surfaces refer to immersions and embeddings of S into R3. The diffeomorphism

group Diff (S), which represents reparametrizations, acts upon Imm(S,R3) from the right via

Imm(S,R3)×Diff (S) 3 (ι, ϕ) 7→ ι ◦ ϕ ∈ Imm(S,R3)

9



Note that a change in parametrization of the same surface results in a different object and we want

a definition for the shape of a surface which is independent of its parametrizations. So, a shape is a

submanifold of R3 that is diffeomoprhic to S. We denote by Bi(S,R3) and Be(S,R3) the spaces of

all immersed and embedded submanifolds. Since the immersions ι and ι ◦ ϕ have the same image

in R3, we can define the shape space, Bi(S,R3) and Be(S,R3), with quotients

Bi(S,R3) ∼= Imm(S,R3)/Diff (S), Be(S,R3) ∼= Emb(S,R3)/Diff (S)

The following theorems show that the shape space Be(S,R3) has a differentiable structure:

Theorem 1.1.10. [CMM91] The quotient space Be(S,R3) is a smooth Hausdorff manifold and

the projection

π : Emb(S,R3)→ Be(S,R3)

is a smooth principal fibration with Diff (S) as a structure group.

Furthermore, for ι ∈ Emb(S,R3), we can define a chart around π(ι) ∈ Be(S,R3) by

π ◦ ψι : C∞(S, (−ε, ε))→ Be(S,R3)

with ε sufficiently small, where ψι : C
∞(S, (−ε, ε))→ Emb(S,R3) is defined by ψι(a) = ι+ anι and

nι is the unit-length normal vector to ι.

For a complete description of shape spaces and its geometry, we refer to [BBM14].

1.2. Computation of discrete conformal maps

Our goal is to apply extrinsic geometric flows to obtain a robust conformal mapping algorithm

from surfaces of genus zero onto a unit sphere. For the sake of computation, surfaces are represented

and visualized by discrete meshes in real-world applications. We want to construct an algorithm

that is both robust and applicable on a wide range of meshes.

The study of geometry of surfaces is very well-established and can be traced back to the last cen-

tury. Recent advances in the field of discrete differential geometry aim to develop a coherent theory

of discrete surfaces and search for discrete notions of metric, curvature, harmonic and conformal

maps from the smooth surface setting. These efforts are to construct discretization methods and

computation algorithms that are not only robust, but preserve the geometric properties inherited

in these concepts from the continuous setting [CW17].
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1.2.1. Data structure for discrete surfaces. In practice, we need to have a representation

of surfaces in order to process surfaces and compute conformal maps on them. A common way to

approximate (and hence represent) smooth surfaces is by a triangulation defined by T := (V,E, F ),

where V,E, F are the sets of vertices, edges, and triangular faces, respectively. From the point of

topology, a triangulation of a surface can seen as a simplicial complex together with a homeomor-

phism, which maps the simplicial complex to the surface. It is obvious that a surface can have

many different triangulations. Moreover, the Euler formula can compute the genus of a given mesh

using (V,E, F ).

|V | − |E|+ |F | = χ(S) = 2− 2g

In terms of data structure, a surface immersed in R3 gives vertices in V with (x, y, z) coordinates.

Sets E and F contain the combinatorial information of vertices incident to each edge and triangular

face respectively. An ideal triangulated mesh, representing a smooth closed, orientable surface,

should satisfy that each face should contain three edges only and each edge is a shared boundary of

two distinct faces. This implies 2E = 3F . Also, it should not contain any self-intersecting or self-

overlapping faces for the ease and consistency in computation. Generation of triangulated meshes

satisfying these criteria to approximate surfaces has been a research field on its own [CDS12].

1.2.2. Discrete conformal maps. Here we would like to provide an overview on the recent

efforts in establishing the notions of discrete conformality and discrete conformal maps. We also

briefly describe algorithms constructed using these different notions. While surveying these discrete

notions and their corresponding algorithms, we can focus on convergence from the viewpoints of

discretization and algorithm to assess their connections to the smooth setting respectively.

• For convergence in discretization, given an algorithm to compute discrete conformal maps,

does this discretized map converge to a smooth conformal map while the mesh get finer

and finer through triangular subdivision? If so, it converges in what sense?

• For convergence in algorithm, we focus on the methods that are used in the algorithm.

For example, if a geometric flow is used to compute a conformal map, does the algorithm

compute the flow using variational method to transform it into an optimization? If the

geometric flow is extrinsic and provides an embedding of the mesh along its evolution,

what kind of discretization methods for the partial differential equation is used? Under

what conditions does this algorithm converge?
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We discuss three common approaches to compute discrete conformal maps:

(i) Vertex scaling This idea was originally proposed by Luo [Luo04] and then further

developed by Bobenko [BPS15], in which a conformal factor is assigned to each vertex

of a triangulated surface. Two discrete metrics are discrete conformal if the length-cross-

ratio, a conformally invariant notion, is preserved for each edge. (The length-cross-ratio

will be defined and used as a measure for conformality in our numerical experiments in

subsequent sections). Gu-Luo-Sun-Wu proved a discrete uniformization theorem, both on

existence and uniqueness of the uniformization map in the discrete setting, for polyhedral

surfaces based on this notion of vertex scaling [GLSW18].

For results in convergence, Gu-Luo-Wu proved the convergence of discrete conformal

maps to the uniformization map if the triangulation is a “δ triangulation” and no edge flip

is required [GLW19]. Bücking showed the convergence of discrete conformal mapping to

the smooth Riemann mapping through subdivision [Bü16], [Bü17].

For algorithms to compute discrete conformal maps, Springborn proposed one which

transforms the problem of finding a discretely conformally equivalent triangulation into a

problem of minimizing a convex energy functional [SSP08]. However, if the input mesh

has a region full of “flat” triangles, i.e. triangles with one angle close to π, the triangle

inequality might fail during the energy minimization, then the output set of edge lengths

cannot be embedded in R3. Edge flipping or subdivision of triangles can be used to fix

this problem. Later, Gu-Luo-Sun-Wu gave a more complete algorithm using edge flip and

Yamabe flow [SWGL14].

(ii) Circle packing This idea was originally proposed by William Thurston as a tool to

study the hyperbolic structure of 3-manifolds. See his lecture notes titled “Geometry and

topology of three-manifolds”. A circle packing metric on a triangulated surface is to assign

a circle to each vertex of the triangulation and these circle radii form a metric. Two circle

packing metrics are discrete conformal if and only if they have the same triangulation.

Thurston gave a proof for a discrete version of the Uniformization Theorem using circle

packing metrics. This idea is further generalized to the inversive distance circle packing

which includes all possible discrete metrics on surfaces.
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For results in convergence, Rodin and Sullivan proved that a discrete conformal map

on the disk constructed by circle packing converges to the smooth Riemann mapping

under subdivision of hexagon triangulations [RS87]. Improvement on results by Rodin

and Sullivan and more convergence results on discrete conformal map were done by He

and Schramm in a series of papers [HS93], [HS96], [HS98].

For algorithms to compute circle packing, Collins and Stephenson gave the first com-

plete algorithm [CS03]. Later, based on the idea of circle packing, Jin-Kim-Lu-Guo gave

algorithms to unify discrete Ricci flow on surfaces of arbitrary topologies, including spheri-

cal (genus zero), euclidean (genus one), and hyperbolic (genus higher than one) [JKLG08].

More precisely, their work is to arbitrarily distribute the total curvature given by the

Gauss-Bonnet theorem through assignment of discrete conformal factors on vertices. These

factors are obtained through minimizing a convex energy functional derived from the Ricci

flow which was given by Chow and Luo [CL03]. A detailed survey on the application of the

discrete Ricci flow to computation of discrete conformal maps can be found in [ZZG+15].

(iii) Circle pattern This idea associates a circle with each triangle face in the original mesh

and results in patterns of non-intersecting circles on a triangulated surface. This con-

struction aims to incorporate the intrinsic geometry of the mesh, in which each edge is

assigned an angle between 0 and π which corresponds to the intersection angle of the two

incident face circles. Bobenko and Springborn proved that such circle patterns can be

characterized as a unique minimizer of a convex energy functional expressed in terms of

logarithmic radius variables and the given edge angles [BS04]. Their result generalized

the previous work done by Rivin [Riv94] and Leibon [Lei02].

For results in convergence, Bücking showed that sequences of circle patterns can be

employed to approximate a smooth conformal map and its first derivative. In some special

cases, the convergence result can be strengthened to a uniform convergence on compact

subsets [Büc08].

For algorithm to apply circle patterns in computing conformal maps, Kharevych,

Springborn, and Schröder computed conformal parametrizations of genus-zero surfaces

by minimizing the convex energy functional described above. They also applied their

algorithm to surfaces of higher genus with the use of cone singularities [KSS06].
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In terms of algorithms, all methods above compute a discrete conformal mapping through mini-

mization of certain convex energy functionals. Most of these functional can be derived from intrinsic

geometric flows such as discrete Ricci flow. In the continuous setting, Ricci flow is conformal and

guaranteed to evolve a genus-zero surface to a sphere. However, Ricci flow only provides a metric of

the surface but not its embedding. Therefore, in the discrete setting, the triangle inequality is not

guaranteed to hold in the resulting mesh after the minimization process. Most of these algorithms

also require the triangulation of the input mesh to be Delaunay.

For a given set P of discrete points in a general position, a triangulation is Delaunay if no point

in set P is inside the circumcircle of any triangle in the triangulation. For a triangulated surface

mesh, one criterion, which can be derived from the definition, to check if the mesh is Delaunay can

be as follows: for any two triangles with a common edge, if the sum of the two opposite angles of

the common edge is less than or equal to 180◦, then the triangles meet the Delaunay condition.

1.2.3. Discrete harmonic map. As stated earlier, harmonic maps are equivalent to confor-

mal maps for closed genus-zero surfaces. Therefore, It is worth mentioning that the recent advances

on computation of discrete harmonic maps and its application. One natural approach of comput-

ing discrete harmonic map is to use Tutte’s embedding theorem [Tut63]. This theorem provides a

discrete analogy to the mean value property of the harmonic map, i.e. the value at one point of

this map is equal to the average of its neighboring values. Tutte’s embedding theorem establishes a

canonical way of straight-line embedding of a planar graph with convex prescribed boundary, which

is topologically equivalent to a disk. We will state the Tutte’s embedding theorem and describe its

algorithm in details in the following chapter.

A method introduced by Aigerman and Lipman is to generalize Tutte’s embedding to a map

from a given surface onto an Euclidean orbifold with spherical topology by solving a sparse linear

system [AL15]. Their main contribution is to provide a globally bijective parametrization of a given

surface without creating any landmarks artificially to cut the surface into disks. Their subsequent

work extended this bijective parametrization onto spherical and hyperbolic orbifolds by minimizing

a discrete Dirichlet energy [AL16,AKL17].
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For results in convergence, Dym, Slutsky, and Lipman proved a linear variational principle for a

sequence of piecewise linear maps obtained by Tutte’s embedding converging to a smooth harmonic

map under subdivision of triangulation [DSL19].

In addition, Floater used a discrete version of maximal principle to prove a discrete version of

the Radó–Kneser–Choquet theorem for discrete harmonic maps and is closely related to Tutte’s

theorem on barycentric mappings of planar graphs [Flo03b]. Also, Gotsman, Gu, and Sheffer

suggested another approach to generalize Tutte’s embedding on spherical geometry by solving

a non-linear system of equation. The proof for the correctness of their algorithm established a

connection to spectral graph theory [GGS03].

1.2.4. Application of geometric flows in computational geometry. Geometric flows are

used to evolve surface geometry and discretization of these flows is used in computing conformal

maps, like the discrete Ricci flow mentioned in the previous section. Many of them have been

applied to mesh processing, surface smoothing, and noise removal on meshes. We mention here

some widely-used applications of geometric flows, including mean curvature flow and Willmore

flow, in computational geometry in order to motivate our investigation in a modified version of the

mean curvature flow.

Let Φ be an immersion of a compact region M ⊂ R2 into R3. We can define the surface area

functional, or sometimes stated as the membrane energy, EA of Φ.

EA(Φ) :=

∫
M
dA

Minimizing EA via gradient descent gives the mean curvature flow. We use ∆ to denote the

Laplace-Beltrami operator induced by f .

∂Φ

∂t
=

1

2
∆Φ

Note that this flow is a nonlinear parabolic PDE since the Laplace Beltrami operator ∆ is a

function of Φ. This flow can also be seen as minimizing the gradient of the surface embedding since

∆Φ = 2H ~N where H is the scalar mean curvature (hence the name of the flow) and ~N ∈ R3 is the

surface normal. This implies that the flow can be used to smooth an embedded surface embedding.

Different algorithms for surface fairing uses different strategies to discretize the flow in space

and in time. One of the earliest works on applying the discretized mean curvature flow to surfaces
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was done by Brakke [Bra92]. His surface evolver used the forward Euler method to discretize the

mean curvature flow. It minimizes the surface area functional and can be used to produce discrete

minimal surfaces. Since the flow is inherently nonlinear, Desbrun, Meyer, Schröder, and Barr

proposed an implicit integration of the flow to enhance stability with large time-steps. Their implicit

fairing method can rapidly remove rough features from irregularly triangulated data by applying a

discretized mean curvature flow via backward Euler method [DMSB99]. Later, Clarenz, Diewald,

and Rumpf applied the mean curvature flow with a discretization using finite elements method in

space and a semi implicit backward Euler scheme in time. Their technique can successively smooth

a noisy initial surface while simultaneously enhance edges and corners on the surface [CDR00].

However, mean curvature flow of an embedded surface can develop sharp singularities within

finite time even in the continuous setting. The conformalized mean curvature flow (cMCF), orig-

inally introduced by Kazhdan, Solomon, and Ben-Chen [KSBC12], is an attempt to modify the

flow in order to compute a conformal map by removing the numerical instability and avoiding

degeneracy in the discrete setting. We will discuss their work and our contribution in great detail

in the following section and chapter 2 respectively.

A closely related concept is the Willmore energy functional Ew of Φ defined to be the squared

L2-norm of the mean curvature.

Ew(Φ) :=

∫
M
H2dA

Ew is invariant under the group of Möbius transformation in R3 and hence conformally invariant

[Whi73]. Minimizing EA via gradient descent gives the nonlinear Willmore flow

∂Φ

∂t
= −∇Ew(Φ)

In the continuous setting, it has been shown that the solutions of the Willmore flow exist glob-

ally and converge exponentially fast to a sphere, provide that the initial shape is close to a

sphere [Sim01]. However, in contrast to the mean curvature flow, it remains open whether the

Willmore flow of an embedded surface can develop singularities within finite time, and in the case of

immersed surfaces, examples that can develop singularities within finite time exist [Bla09]. More-

over, this flow requires higher order surface derivatives (fourth-order), which makes it more difficult

to discretize compared to the mean curvature flow. Since Ew can be rewritten using integration by
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parts

Ew(Φ) =
1

4
〈∆Φ,∆Φ〉 = −1

4
〈∆2Φ,Φ〉

one possible way to approximate the Willmore flow is by the following flow using the bilaplacian

operator
∂Φ

∂t
=

1

2
∆2Φ

More ideas on approximating the Willmore flow and their applications are discussed in the works

of Schenider and Kobbelt [SK00a], [SK00b].

Yoshizawa and Belyaev used the cotangent formula to directly discretize the energy gradient

−∇Ew(Φ) and introduced an additional tangential force to improve the quality of the evolving

surface mesh. But this approach might distort the mesh texture and the flow can also be unstable

[YB02]. Clarenz et al. discretized the variational formulation of the Willmore energy in linear

Lagrange elements and the corresponding L2-flow can be solved by a coupled system of second order

differential equations. This approach is valuable for geometric modelling since it allows tangent

constraints at the boundary [CDD+04].

Bobenko and Schröder presented a discrete version of the Willmore energy Ew preserving its

conformal invariance property. They also derived the corresponding expressions for the gradient

−∇Ew(Φ) in the discrete setting. Later, Wardetzky et al. investigated the discrete Willmore flow by

using a semi-implicit quasi-Newton scheme to cope with the nonlinearity of the flow [WBH+07].

Finally, a conformal Willmore flow has been suggested which is guaranteed to keep the metric

conformal to the original surface. It can be used to smooth the mesh until it converges to a

sphere [CPS11], [CPS13].

1.3. Conformalized Mean Curvature Flow

Here we are interested in the conformalized mean curvature flow (cMCF), originally introduced

by Kazhdan, Solomon, and Ben-Chen [KSBC12]. In this section, we describe their algorithm,

show the mathematical derivations, and explain the motivation. Then we briefly describe our own

implementation of this algorithm. In the next chapter (2), we highlight some limitations of this

algorithm and discuss in great details our improvement on the algorithm.

1.3.1. Mean Curvature Flow in the continuous setting. To begin with, we start with

the mean curvature flow (MCF) on a surface M . We assume M to be a compact surface of genus
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zero. While the MCF can be applied to a non-compact surface, this assumption helps to focus on

our goal of computing a conformal map from closed genus-zero surfaces.

Let Φt : M → R3 be a smooth family of immersions with time t ≥ 0 and let gt be the induced

metric at time t. MCF is defined as

∂Φt

∂t
= ∆gtΦt(1.1)

where ∆gt is the Laplace-Beltrami operator defined w.r.t. gt.

∆gt := − 1√
det(gt)

∂

∂xα

(√
det(gt)g

αβ
t

∂

∂xβ

)
, where gαβ denotes the inverse of gαβ

We sometimes use ∆t to denote ∆gt .

∆gtΦt = 2HtN̂t where Ht(p) is the scalar mean curvature and N̂t(p) is the unit surface normal

at point p ∈M . Since gt is the induced metric, the MCF can be rewritten as

∂Φt

∂t
= −2HtN̂t

This reformulation implies that, when Φt(M) evolves under the mean curvature flow, Φt evolves

points on M along its normal direction with the scalar mean curvature as speed.

The MCF (1.1) is a second order nonlinear parabolic PDE since the metric gt depends on

the immersion Φt at every t. So unlike the conventional heat diffusion equation which is a linear

parabolic equation and does not develop singularities, MCF may develop singularities. Moreover, an

immersion (local embedding) of a surface suffices for computing the flow since the mean curvature

at a point p can be calculated in a neighborhood alone. A global embedding of M is not required

here.

In dimension one, when MCF is applied to a curve γ, Φt is a family of immersions of a closed

curve in R2 instead of a surface in R3, the flow becomes

∂Φt

∂t
= −2KtN̂t

where Kt(p) is the scalar curvature at point p. This is equivalent to the curve shortening flow.

Gage showed [Gag83], [Gag84] that under the 1D MCF, if Φ0(γ) is convex, Φt(γ) eventually

converges to a circle under scaling at every time step as to keep the length of the curve constant.

Furthermore, Gage and Hamilton later proved that all smooth convex curves eventually contract to
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a point (singularity) without forming any other singularities under the 1D MCF [GH86]. Finally,

Grayson showed that any non-convex curve becomes convex in finite time, then stays convex under

the 1D MCF [Gra87] and a simpler proof for Grayson’s result was later given [AB11].

In two dimension when MCF (1.1) is applied to surfaces, there are analogous results as in one

dimension. First, a sphere remains spherical but gets smaller and eventually contracts to a point

under MCF. To show this, due to the rotational symmetry of the sphere, the immersion Φt of a

sphere S can be written as

Φt(p) = r(t) · ~N(p), where r(t) is the radius function and the inward normal vector ~N(p) = p

Also, the mean curvature of all points on a sphere of radius r is Ht = 2/r. Therefore,

∂Φt

∂t
= −2HtN̂t = −2 ~N

r

Therefore, it reduces to an ODE of r(t)

r′(t) = − 2

r(t)
⇒ r(t) =

√
1− 4t

This implies that the sphere radius always goes to zero in finite time (the sphere contracts to a

point). Analogous to the global result of Gage and Hamilton in one dimension, Huisken showed that

a closed embedded surface flows to a sphere in R3. Huisken’s result is indeed much more general

and valid for any closed convex hypersurface in Rn+1 for n > 1. His result states that under MCF

these hypersurfaces remains convex and eventually become extinct in a “round point” [Hui84].

The implication of Huisken’s result is that any convex surface will flow to a round sphere when

rescaled to keep the surface area constant in every time step.

Here we present our simulation of evolving an ellipsoid (which is convex) to a round sphere

through the MCF. We discretize the flow using finite element methods which are described and

analyzed in the subsequent section. We generate a discrete mesh for an ellipsoid with one unit in

two of its three semi-axes and two units in the remaining semi-axis. Below are the views of looking

at the ellipsoid from the side and from the tip.

This mesh has around 34k vertices and all of them have either valence of 5 or 6. Almost all

triangles are close to equilateral and have similar areas. We refer readers to a detailed analysis of

our meshes in the next chapter. We run 200 iterations with step size of 0.01 (which comes from the
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discretization of the temporal derivative, in finite element discretization, it can be also be seen as

a weight that we multiply to the stiffness matrix and then subtract the weighted stiffness matrix

from the mass matrix) until the MCF converges while keeping the surface area constant, i.e. equal

to the area 4π of a unit sphere in this case.

This simulation shows that the mesh stays convex and eventually converges to a sphere. The

values of sphericity are s = 0.92, 0.97, 0.99, 0.997, 0.998 at the 0th, 50th, 100th, 150th, 200th step

of iteration.

Figure 1.2. Side view
of ellipsoid

Figure 1.3. Front view
of ellipsoid

Figure 1.4. 50th step Figure 1.5. 100th step
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Figure 1.6. 150th step Figure 1.7. 200th step

Although MCF can provide a spherical parametrization for the ellipsoid in this case, this

parametrization is not conformal. Moreover, non-convex surfaces are known to develop singu-

larities under MCF. Grayson showed analytically that a neck-pinch forms in the dumbbell shape,

which consists of two spheres and a sufficiently long and narrow barbell handle [Gra89]. The han-

dle becomes narrower and thinner under MCF and eventually develops a singularity. The figures

below are taken from [CMP15]:

Figure 1.8. initial shape and the handle becomes thinner under MCF

Figure 1.9. formation of neck-pinch

We illustrate the development of singularities under MCF with the mesh “spot” shown below.

It has around 3k vertices and all of them have either valence 5 or 6. We use a step size of τ = 0.05
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while keeping the surface area constant. The mesh’s head evolves into a spike where a singularity

forms within the first few iterations. Iterations stop with the emergence of singularities since some

entries in the stiffness matrix become infinitely large and exceed precision.

Figure
1.10. Initial
mesh “spot”

Figure
1.11. 5th
step

Figure
1.12. 10th
step

1.3.2. Finite element method and discretization of mean curvature flow. In this

section, we present the discretization of the MCF using the finite element method. Then we

explain the formation of singularities emerging in the MCF, which we demonstrated in the previous

section, by identifying the corresponding numerical instabilities that arise in the discretized MCF.

The analysis we present here is the work of Kazhdan, Solomon, and Ben-Chen [KSBC12]. We

present their work here in our words and with more detailed mathematical derivations.

In order to discretize the MCF equation (1.1), we use the Galerkin method from finite element

methods, which is to use a set of basis functions to convert a partial differential equation with a

continuous operator (the Laplace-Beltrami oeprator) into a discrete problem.

Suppose the embedding map of the MCF, Φt, is defined on a closed surface of genus zero M

and we have a set of N function basis {B1, · · ·BN} : M → R. We can approximate 1 the map Φt by

coefficient vectors {x1(t), x2(t), · · · , xN (t)} ⊂ R3, where these coefficient vectors are independent

of surface M :

Φt(p) =

N∑
i=1

xi(t)Bi(p) ∀p ∈M(1.2)

We substitute (1.2) into the MCF (1.1) and use the weak formulation, i.e. multiply both sides

with a basis function Bj where 1 ≤ j ≤ N and integrate over M with respect to the area measure

1This approximation is in the least-square sense. Suppose that the initial embedding Φ0(M) /∈ span{B1, · · ·BN}, we

find the closest embedding Φ̃0(M) ∈ span{B1, · · ·BN} such that ‖Φ0 − Φ̃0‖2 is minimized.
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dA 2. The xi(t) are the coefficient vectors of Φt.∫
M

∑
i

(
∂xi
∂t
·Bi
)
·Bj dAt =

∫
M

∑
i

(
∂xi
∂t
·∆gtBi

)
·Bj dAt

Integration by parts 3 gives

∑
i

∫
M

∂xi
∂t

(Bi ·Bj) dAt =
∑
i

xi(t)

∫
M
gt(∇tBi,∇tBj) dAt

where ∇t is to compute the gradient vector with respect to the induced metric gt.

Using the backward Euler method with a time step τ to approximate the time derivative, i.e.
∂xi
∂t
≈ xi(t+τ)−xi(t)

τ , we obtain

∑
i

(
xi(t+ τ)− xi(t)

τ

)∫
M

(Bi ·Bj) dAt =
∑
i

xi(t+ τ)

∫
M
gt(∇tBi,∇tBj) dAt

We can rewrite this using matrix formulation by defining a matrix ~x(t) := {x1(t), x2(t), · · · , xN (t)}T ,

the mass matrix Dt, and the stiffness matrix Lt

Dt
ij :=

∫
M
BiBj dAt, Ltij :=

∫
M
gt(∇tBi,∇tBj) dAt,(1.3)

Then we have

Dt (~x(t+ τ)− ~x(t)) = τLt~x(t+ τ)

At time t where ~x(t) is known, we compute ~x(t+ τ) at the next time step t+ τ :

⇒
(
Dt − τLt

)
~x(t+ τ) = Dt~x(t)(1.4)

2dAt denotes the surface areainduced by the metric gt
3 ∫

M

(∆tBi ·Bj) dAt = −
∫
M

1√
det(gt)

∂

∂xα

(√
det(gt)g

αβ
t

∂Bi
∂xβ

)
Bj

√
det
(
gt · g−1

0

)
dA0

=

∫
M

(√
det(gt)g

αβ
t

∂Bi
∂xβ

)
∂Bj
∂xα

√
det(g−1

0 )dA0

=

∫
M

gtνµg
µβ
t

∂Bi
∂xβ

gναt
∂Bj
∂xα

√
det
(
gt · g−1

0

)
dA0

=

∫
M

gt(∇tBi,∇tBj)dAt

where the divergence theorem is applied in the second equality.
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Note that ~x(t) is matrix of dimension N × 3 since each of its row is a coefficient vector xi(t) ∈ R3,

whereas D and L are of dimension N ×N . In terms of dimension, the equation (1.4) is

N ×N N × 3 = N ×N N × 3

hence of size N × 3 on both sides. This can be as a ”summarization” of three equations, one for

each coordinate, i.e. (
Dt − τLt

)
~xx(t+ τ) = Dt~xx(t)(

Dt − τLt
)
~xy(t+ τ) = Dt~xy(t)(

Dt − τLt
)
~xz(t+ τ) = Dt~xz(t)

Therefore, we are solving for coefficient vectors xi(t) in the x, y, z-directions in each time step. The

equation (1.4) is the discrete version of the continuous MCF equation (1.1).

Figure 1.13. Hat basis I
source: discrete differential geom-
etry by Keenan Crane Figure 1.14. Hat basis II

source: discrete differential geom-
etry by Keenan Crane

Now we define our basis functions. Given a triangulated surface approximating M , defined

by (V, E , T ), the hat basis Bi : V → R is first defined on the set of vertices V and then extended

linearly to the entire triangulated surface. See Figures (1.13) and (1.14).

Bi(vj) =

 1 i = j

0 i 6= j
∀vj ∈ V(1.5)
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vj

vi

T 2
ijT 1

ij

β1
ij

β2
ij

Figure 1.15. T 1
ij , T

2
ij share an edge eij = (vi, vj)

One immediate consequence of using the hat basis is that the coefficient vector xj(t) now describes

the trajectory of the vertex vj since

Φt(vj) =
∑
i

xi(t)Bi(vj) =
∑
i

xi(t)δij = xj(t)

Furthermore, we can give explicit formulas to compute the mass matrix D and the stiffness ma-

trix L on a discrete surface (V, E , T ), which is a discrete equivalence to the continuous formulation

(1.3). Let T 1
ij , T

2
ij ∈ T be two triangles that satisfy T 1

ij ∩T 2
ij = eij ∈ E and β1ij , β

2
ij be the two angles

opposite edge eij , see Figure (1.15).

Dij =


1
12

(
Area (T 1

ij) + Area (T 2
ij

)
= 1

12 (Area of two adjacent triangles to edge eij) i ∼ j∑
k∈N(i)Dik = 1

valence of vi
(Area of all triangles adjacent to vertex vi) i = j

0 otherwise

(1.6)

Lij =


−1

2

(
cotβ1ij + cotβ2ij

)
i ∼ j

−∑k∈N(i) Lik i = j

0 otherwise

(1.7)

where i ∼ j implies that vertex vi is adjacent to vj .
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The derivation of formulas (1.6) and (1.7) are in Appendix (A).

Next, we go back to the MCF in the continuous setting and look into the operator in the flow.

Recall that the embedding map of surface M is Φt(M) at time t over the map. Suppose the

parametrization of the embedded surface Φt(M) is given by the map Xt : U ⊂ R2 7→ R3 defined

by Xt(x1, x2) := Φ(p), where (x1, x2) is the local coordinate chart and p ∈M . The measure of the

surface area at t = t0 and t = t1 are given respectively by

dA0 =
√
det(g0) dx

1 ∧ dx2, dA1 =
√
det(g1) dx

1 ∧ dx2

Hence,

dA0 =

√
det(g0)√
det(g1)

√
det(g1) dx

1 ∧ dx2 =
√
det
(
g0 · g−11

)
dA1 ⇒ dA1 =

√
det
(
g1 · g−10

)
dA0

The operator g1 · g−10 is an endomorphism of the tangent space to itself. It characterizes how

the geometry of the embedded surface Φt(M) is stretched over the course of the flow from time t0

to t1. Its eigenvectors, v1(t) and v2(t), define the principal directions of stretch (orthogonal with

respect to both g0 and g1) and its eigenvalues λ21(t), λ
2
2(t) define the magnitudes of stretch along

these directions [KSBC12].

We define a linear map Λ: TΦ0(p) 7→ TΦ1(p) between tangent planes of Φ0 and Φ1 at point

p ∈ M . Λ maps vectors ∂v1 , ∂v2 ∈ TΦ0(p) with ∂v1 ⊥ ∂v2 to vectors, ∂w1 , ∂w2 ∈ TΦ1(p) with

∂w1 ⊥ ∂w2 such that

Λ := dΦ1 ◦ dΦ−10 ⇒ Λ∂vi = λi∂wi , i = 1, 2

where dΦ0 and dΦ1 are the derivatives of maps Φ0 and Φ1. Also, the eigenvectors ∂wi and the

eigenvalues (stretch factors) λi are time dependent.

More importantly, the existence of the map Λ can be proved by the Intermediate Value Theorem.

We provide the proof in the appendix (A).

We let |Λ| denote the determinant of Λ. So we have |Λ| = λ1λ2. Furthermore, using the relation

between the embedding map and its induced metric gt = dΦT
t dΦt, we can compute the determinant
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of the map g1 · g−10 :

det
(
g1 · g−10

)
= |g1| |g0|−1 = |dΦT

1 dΦ1| |dΦT
0 dΦ0|−1 = |dΦT

1 dΦ0
−1|2 = |Λ|2 = (λ1λ2)

2

Therefore,

dA1 = (λ1λ2) dA0(1.8)

We can apply equation (1.8) on the mass and stiffness matrices Dt and Lt in formula (1.3)

Dt
ij =

∫
M
Bi ·Bj dAt =

∫
M
Bi ·Bj (λ1(t)λ2(t)) dA0

Since the area of the embedded surface is decreasing under the MCF, λ1(t)λ2(t) tends to get smaller

over the course of the flow, so the computation of Dt
ij is numerically stable.

Ltij =

∫
M
gt(∇tBi,∇tBj)dAt

Since

gt(∇tBi,∇tBj) = gµνg
να︸ ︷︷ ︸

=δµα

∂αBig
µβ∂βBj = gαβ∂αBi∂βBj ,

we have

Ltij =

∫
M

(
∂Bi
∂w1

∂Bi
∂w2

)g0(v1, v1) 0

0 g0(v2, v2)

−1
∂Bj∂w1
∂Bj
∂w2

 dAt.

Using ∂wi = 1
λi
∂vi , we can rewrite

Ltij =

∫
M

(
1
λ1

∂Bi
∂v1

1
λ2

∂Bi
∂v2

)g0(v1, v1) 0

0 g0(v2, v2)

−1
 1
λ1

∂Bj
∂v1

1
λ2

∂Bj
∂v2

 (λ1λ2 dA0) .

Therefore,

Ltij =

∫
M

(
1

g0(v1, v1)
· 1

λ21

∂Bi
∂v1

∂Bj
∂v1

+
1

g0(v2, v2)
· 1

λ22

∂Bi
∂v2

∂Bj
∂v2

)
λ1λ2 dA0

=

∫
M

(
1

g0(v1, v1)
· λ2
λ1

∂Bi
∂v1

∂Bj
∂v1

+
1

g0(v2, v2)
· λ1
λ2

∂Bi
∂v2

∂Bj
∂v2

)
dA0

On one hand, the terms 1
g0(v1,v1)

∂Bi
∂v1

∂Bj
∂v1

and 1
g0(v2,v2)

∂Bi
∂v2

∂Bj
∂v2

only depend on the values of the

partial derivatives of the basis function Bi along directions that are unit-length under the initial
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metric g0, so their values remain stable during the flow. On the other hand, the stretch ratios λ1λ2
λ1λ1

and λ1λ2
λ2λ2

can tend to infinity when the embedding map Φt becomes less and less conformal with

respect to the initial metric g0.

1.3.3. Conformalized Mean Curvature Flow in the continuous setting. The idea for

the formulation of the conformalized Mean Curvature Flow is to replace the metric gt with a metric

g̃t that is conformal to the initial metric g0, i.e. a conformalized metric

g̃t :=

√
|g−10 · gt|g0

The corresponding linear map Λ: TΦ0(p) 7→ TΦ1(p) between tangent planes of Φ0 and Φ1 has two

equal eigenvalues λ̃1 = λ̃2 since g̃t is conformal to g0. Moreover, the conformalized metric g̃t has

the same determinant as the old metric gt:

|g̃t| =
(√∣∣g−10 · gt

∣∣)2

· |g0| = |gt|

This gives λ̃1λ̃2 = λ1λ2. Hence λ̃1 = λ̃2 =
√
λ1λ2.

The coefficients of the mass matrix Dt
ij remain the same using the conformalized metric g̃t and

the coefficients of the stiffness matrix Ltij become independent of time t since

L̃tij =

∫
M

(
1

g0(v1, v1)
· λ̃2
λ̃1

∂Bi
∂v1

∂Bj
∂v1

+
1

g0(v2, v2)
· λ̃1
λ̃2

∂Bi
∂v2

∂Bj
∂v2

)
dA0

=

∫
M

(
1

g0(v1, v1)
· ∂Bi
∂v1

∂Bj
∂v1

+
1

g0(v2, v2)
· ∂Bi
∂v2

∂Bj
∂v2

)
dA0 = L0

ij

Replace the metric gt with the conformalized metric g̃t in the mean curvature flow, we get the

conformalized mean flow (cMCF). Let Φt : M → R3 be a smooth family of immersions with

time t ≥ 0 and the induced metric gt at time t. cMCF is defined as

∂Φt

∂t
=
√
|g0||gt|−1∆g0Φt(1.9)

Note that if the map Φt is conformal with respect to the initial metric g0, ∆gt =
√
|g0||gt|−1∆g0 ,

then the cMCF agrees with the MCF.
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The corresponding discretized cMCF using the finite element method is

(Dt − τL0) ~X(t+ τ) = Dt ~X(t)(1.10)

While the mass matrix Dt is updated at every step, the initial stiffness matrix L0 is used and

remains the same during the flow.

An alternative solution to discrete conformalized curvature flow is done by Crane, Pinkall, and

Schröder [CPS13]. They perform a discrete conformal Willmore flow in the space of curvature

instead of coordinate space.

1.3.4. Quantities to measure discrete conformality and sphericity. Given a map from

a triangulated surface to another triangulated surface f : (V, E , T ) → (V ′, E ′, T ′). Here are two

different quantities to measure how far a map is from achieving discrete conformality:

(I). Angular distortion associated to each triangle,

max
θ=α,β,γ

( |θ − θ′|
θ

)
where α, β, γ are the three angles in a triangle T ∈ T and α′, β′, γ′ are the angles of the

triangle T ′ ∈ T ′ which is the image of T under the map f . The value 0 implies no angular

distortion.

We measure the angular distortions for all triangles and compute their mean value.

(II). For each edge eij ∈ E , we define the associated length-cross-ratio (lcr). See Figure (1.16),

cij =
`im · `jk
`mj · `ki

We let cij denote the lcr of the edge eij and c′ij denote the lcr of the edge e′ij ∈ E ′ which

is the image of eij under the map f . Two meshes are conformally equivalent if and

only if cij = c′ij for all edges eij, e
′
ij [BPS15]. This is equivalent to

c′ij
cij

= 1.

We measure the deviation of the ratio of lcr
c′ij
cij

from one for all the edges. Then we

compute its mean absolute error (MAE), i.e. the average of all absolute errors from one,

we denote here the lcr of an edge e to be c′e
ce

, then MAE = 1
|E|
∑

e∈E

∣∣∣ c′ece − 1
∣∣∣.
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Figure 1.16. length-cross-ratio of edge eij

In addition, we use a dimensionless number s =
(36πV 2)

1
3

A to measure the sphericity, where V and

A are the volume and the total surface area of the mesh respectively. We compute the surface area

A by summing the surface areas of all faces in the mesh. As for the enclosed volume V , in each

triangle, we compute the signed volume of a tetrahedron formed by this triangle and topped off at

the origin. V is equal to the sum of signed volumes of all these tetrahedra.

From the defintion of sphericity, s = 1 in the case of a sphere. It follows from the isoperimetric

inequality (in R3 in our case), which states that a sphere has the smallest surface area per given

volume, that any closed surfaces that are a not sphere will have sphericity less than 1.
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CHAPTER 2

Improvement on conformalized mean curvature flow

In this chapter, we study the behavior of the conformalized mean curvature flow (cMCF). In

Section 1, we apply the flow to meshes with simple geometry such as a sphere and ellipsoids. There

is strong experimental evidence demonstrating that meshes with protrusions further elongate under

the flow until it converges to a unit sphere. Then, we discuss the numerical issues caused by this

behavior of further elongation of meshes. In Section 2, we introduce an initialization step that

gives a spherical parametrization of the input mesh and demonstrate the use of cMCF to obtain

a conformal spherical parametrization. This enhanced procedure can be applied to meshes that

the original cMCF procedure cannot handle. We provide results from numerical experiments in

which we test our algorithm on a wide variety of meshes. In Section 3, we give a new algorithm

named ”Sphericalized cMCF” using cMCF to construct a homotopy of an arbitrary degree one

map to a homeomorphism from a unit sphere to itself. We demonstrate the use of this algorithm

using Gauss map applied on closed genus-zero surfaces as a degree one map. Finally, in Section 4,

we investigate a different discretization of the Laplace-Beltrami operator involved in the cMCF in

order to stabilize the flow.

2.1. Flow behaviors and limitations

To begin with, we stated in the introduction Chapter (1) that the cMCF is identical to the

mean curvature flow (MCF) when it is applied on a sphere. It is because the embeddings of a

sphere under the MCF is conformal, i.e. a sphere under MCF shrinks towards its center until the

sphere collapses into a point. Since we keep the surface area of the mesh constant in our cMCF

implementation, a unit sphere should remain unchanged regardless of how many iterations are

performed. We would like to verify this experimentally. Below are two meshes of a unit sphere

with different mesh sizes.

Since the valence of most vertices is 6, the number of edges and faces, |E| ∼ 3|V |, |F | ∼ 2|V |,
can be computed by the Euler formula. Also, one measure for the mesh quality is to compute
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Figure 2.1. Sphere 1 with
|V | ≈ 500

Figure 2.2. Sphere 2 with
|V | ≈ 2k

the statistics of distribution of maximal and minimal angles in all triangles. If sphere 1 is uni-

formly triangulated by approximately equilateral triangles, the expected area of each triangle

should be 4π/|F | ≈ 1.3e − 2. The maximal and minimal area of the triangle differ only with∣∣0.015
0.013 .− 1

∣∣× 100% ≈ 15% and
∣∣0.012
0.013 − 1

∣∣ ≈ 8%. These statistics showed that most triangles of

these spherical meshes are approximately equilateral triangles.

Sphere 1 mean µ std σ
max. ang. 67◦ 5◦

min. ang. 55◦ 3◦

max. min
area 1.5e-02 1.2e-02

Sphere 2 mean µ std σ
max. ang. 68◦ 5◦

min. ang. 54◦ 4◦

max. min
area 4.1e-03 3.0e-03

Moreover, we obtain two more meshes of a unit sphere by performing barycentric subdivision

on the above spherical meshes. Suppose that the unit sphere has a triangulation (V,E, F ), the new

sphere obtained by the barycentric subdivision has the number of vertices equal to |V |+ |F |. Since

|F | ∼ 2|V | (followed from the previous argument using the fact that the valence of most vertices

in the original sphere is 6), new sphere obtained by the barycentric subdivision has the number of

vertices equal to 3|V |. Our expected mean for the maximal and minimal angles are 120◦ and 30◦

respectively.

Subdivided sphere 1 mean µ std σ
max. ang. 120◦ 6◦

min. ang. 29◦ 3◦

Subdivided sphere 2 mean µ std σ
max. ang. 120◦ 7◦

min. ang. 30◦ 3◦

Now we apply cMCF to these spherical meshes. We run 26 = 64 steps of iteration. The spherical

meshes, sphere 1 and its subdivided mesh, stay spherical throughout the iterations, as indicated

in the following plot of sphericity. It is the same result for sphere 2. Furthermore, the behavior of
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Figure 2.3. Barycentric subdivision

Figure 2.4. Subdivided
sphere 1 with |V | ≈ 1, 500

Figure 2.5. Subdivided
sphere 2 with |V | ≈ 5, 500

cMCF applied to these spherical meshes is independent of the step size chosen, i.e. any value of τ

in the range from 1e− 6 to 0.1.
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As for the change in conformality, the average length-cross-ratio is constantly (almost) equal

to 1 (≈ 0.999 in actual data). we also show the basic statistics for the distribution of the maximal

angular distortion in all triangles. There is barely any angular change in each piece of trianlge.

mean µ std σ
Sphere 1 1.4e-4 1.1e-8

Subdivided sphere 1 2.0e-4 1.2e-8
Sphere 2 4.2e-4 1.2e-7

Subdivided sphere 2 6.9e-4 1.3e-7

Table 2.3. Maximal ratio of angular distortion

These data show that, for these examples, a spherical mesh remains unchanged under the cMCF,

independent of its mesh sizes and mesh quality. These examples agree with the derivation of the

cMCF in the continuous case.

2.1.1. Ellipsoids and numerical issues. Next, we look at a set of ellipsoids with different

radii. An ellipsoid has a simple geometry but can shed light on the behavior of meshes under the

cMCF. We keep two of the three semi-axes in the ellipsoid constant, say 1 unit, and we vary the

value of the remaining semi-axis, denoted by r.

Again, an examination of the meshes on the maximal and minimal angles and the area of

triangles show that most triangles in these ellipsoidal meshes are approximately equilateral triangles.

Also, We apply the same subdivision procedure to these ellipsoids as in the case of spheres.

Figure 2.6. r = 2
with |V | = 780

Figure 2.7. r = 4
with |V | ≈ 1, 400
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Figure 2.8. r = 8
with |V | ≈ 2, 600

Figure
2.9. r = 16 with
|V | ≈ 5, 200

Figure
2.10. r = 24
with |V | ≈ 7, 600

Figure
2.11. r = 32
with |V | ≈ 10, 000

ellipsoids mean µ std σ
r = 2 67◦ 5◦

r = 4 67◦ 5◦

r = 8 66◦ 4◦

r = 16 66◦ 4◦

r = 24 65◦ 3◦

r = 32 65◦ 3◦

(a) Maximal angle

ellipsoids mean µ std σ
r = 2 54◦ 3◦

r = 4 54◦ 3◦

r = 8 55◦ 3◦

r = 16 55◦ 3◦

r = 24 56◦ 3◦

r = 32 56◦ 3◦

(b) Minimal angle

ellipsoids max. area µ min. area
r = 2 1.5e-02 1.2e-02
r = 4 1.7e-02 1.2e-02
r = 8 1.8e-02 1.1e-02
r = 16 1.8e-02 1.1e-02
r = 24 1.8e-02 1.1e-02
r = 32 1.8e-02 1.2e-02

Table 2.5. Area of triangles
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subdivided ellipsoids mean µ std σ
r = 2 120◦ 6◦

r = 4 120◦ 6◦

r = 8 120◦ 5◦

r = 16 120◦ 5◦

r = 24 120◦ 4◦

r = 32 120◦ 6◦

(a) Maximal angle

subdivided ellipsoids mean µ std σ
r = 2 29◦ 3◦

r = 4 29◦ 3◦

r = 8 29◦ 3◦

r = 16 29◦ 3◦

r = 24 29◦ 2◦

r = 32 29◦ 2◦

(b) Minimal angle

subdivided ellipsoids max. area µ min. area
r = 2 5.1e-3 3.9e-3
r = 4 5.6e-3 3.8e-3
r = 8 5.9e-3 3.8e-3
r = 16 6e-3 3.8e-3
r = 24 5.9e-3 3.8e-3
r = 32 5.9e-3 4.1e-3

Table 2.7. Area of triangles

We apply cMCF to these ellipsoid meshes. We run 29 = 512 steps with a fixed step size τ = 0.01.

The sphericity first tends to worsen, then slowly increases again and eventually converges to

one. That suggests that an ellipsoid is first deformed into an even less spherical object and then

converges back to a sphere. The sphericity evolution of the ellipsoids and their counterparts of

worse mesh quality through barycentric subdivisions are nearly identical (the solid lines and the

dashed lines overlap each other). Therefore, the behavior of ellipsoids under cMCF observed here

is attributed to its geometry and this behavior appears to be independent of the mesh quality.

In terms of the discrete conformality, the length-cross-ratios of the ellipsoids and their coun-

terparts of worse mesh quality have similar behavior despite their difference in magnitude. In the

intermediate steps of the flow, the sphericity decreases and the mean of all length-cross-ratio devi-

ates largely from one. This implies that the intermediate shapes under the cMCF are not discrete

conformal to the original ellipsoids. As the cMCF converges, the mean of the length-cross-ratio

converges to one. Both the mean of the length-cross-ratio and that of the angular distortion ratio

confirm that the resulting sphere is discrete conformal to the ellipsoids.

Numerical issue For the ellipsoid with r = 32, we stopped the cMCF flow of the ellipsoid

after the first 30 iterations due to numerical problems. There are degenerate triangles forming in

the mesh, in which triangles collapse into a point. The calculations of their edge length and area

are no longer possible due to numerical issues using floating point arithmetics. The cMCF cannot
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Ellipsoids mean µ std σ
r = 2 4.0e-2 1.9e-4
r = 4 7.2e-2 4.7e-4
r = 8 9.0e-2 6.3e-4
r = 16 0.10 1e-3
r = 24 0.10 1e-3

subdivided ellipsoids mean µ std σ
r = 2 4.2e-2 2.6e-4
r = 4 7.5e-2 6.8e-4
r = 8 9.6e-2 1.1e-3
r = 16 0.10 2e-3
r = 24 0.11 2e-3

Table 2.8. Maximal ratio of angular distortion

be applied in this extreme case without running into numerical errors. We will describe our strategy

to enhance the performance of cMCF in such a case in the following section.
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Here are front views (looking at the tip) of the ellipsoid with r = 8 and its deformation at the

12th step.

Figure 2.12. Initial r = 8 Figure 2.13. r = 8 after 12 iterations

Here are side views of the ellipsoid with r = 16 and its deformation at the 20th step and

close-ups.

Figure 2.14. Initial r = 16 Figure 2.15. r = 16 after 20 iterations
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Figure 2.16. Initial r = 16
Figure 2.17. r = 16 after
20 iterations

From the different views of the ellipsoids during the cMCF shown above, we observe that the

triangles at the tip of ellipsoid are squeezed into very tiny triangles whereas the triangles in the

long body of the ellipsoids are being stretched into thin and long triangles. These can be explained

by the fact that the initial ellipsoid tip has the highest curvature and hence the conformal factor of

mapping this region onto a sphere is the largest. The ellipsoids are being further elongated before it

converges to a sphere that is discrete conformal to the initial shape. The further elongation results

in the thin and long triangles in the ellipsoid during the evolution. The front view and the side view

of the resulting sphere from the cMCF (ellipsoid of r = 4 shown) also confirm this observation.

Figure 2.18. Front view of
resulting sphere

Figure 2.19. Side view of
resulting sphere

2.1.2. Elongation of meshes under cMCF. In the previous section, experimental data is

given that the ellipsoid meshes first elongate further before converging to a unit sphere which is

discretely conformal to the original mesh. We want to verify that such behavior is not limited to

40



ellipsoids but to other long cylindrical meshes or meshes that have protrusions. Here are some

examples.

The mesh of the Gyroscope’s axle consists of a octagonal cylinder with octagonal pyramids on

both ends. The mesh of the Rod consists of a cylinder with semi-spheres on both ends. The mesh

of the Rod with grooves consists of a rectangular bar with semi-circular ridges distributed in a

evenly spaced fashion on the top. All these meshes are topologically equivalent to a sphere since

they have triangulations (V,E, F ) satisfying |V |− |E|+ |F | = 2. This implies that the meshes have

genus zero.

Figure 2.20. Gyro-
scope’s axle, |V | ≈ 3.5k

Figure 2.21. Semi-
cylinder, |V | ≈ 6k

Figure 2.22. Rod, |V | ≈ 20k
Figure 2.23. Rod with
grooves, |V | ≈ 54k

We run 29 = 512 steps with fixed step size τ = 0.01. Regardless of how the step size is chosen

between [1e− 4, 0.1], the behavior of the sphericity and the mean length-cross-ratio of the meshes

are similar.

The Gyroscope’s axle, Semi-cylinder, and Rod all first further stretch along the direction of

their protrusion, then get rounder and eventually converge to a unit sphere. The length-cross-ratio
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shows that the discrete conformality improves steadily while the meshes converging to a unit sphere.

The Rod with grooves fails to converge under the cMCF. The mesh got stretched infinitely into a

thin line. We show here the evolution of the mesh after 10 and 20 iterations.

Figure 2.24. Rod with
grooves, 10th step

Figure 2.25. Rod with
grooves, 20th step

2.1.3. Robustness. Despite the limitations and drawbacks described in previous section, the

cMCF is relatively robust when applied on meshes with no significant protrusions. In this case,

robustness means that the further elongation of meshes are not noticeable. Here we present a set

of meshes with a wide variety of geometries:
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Figure 2.26. Cactus, |V | ≈
2.4k, |F | ≈ 5k

Figure 2.27. Blobby, |V | ≈
2k, |F | ≈ 4k

Cactus mean µ std σ
max. ang. 83◦ 10◦

min. ang. 41◦ 8◦

max. min
area 5.9e-3 6.1e-4

Blobby mean µ std σ
max. ang. 77◦ 13◦

min. ang. 47◦ 9◦

max. min
area 2e-2 1.6e-4
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Figure 2.28. Spot, |V | ≈ 3k, |F | ≈ 6k
Figure 2.29. Fandisk, |V | ≈
6k, |F | ≈ 12k

Spot mean µ std σ
max. ang. 84◦ 9◦

min. ang. 38◦ 9◦

max. min
area 8.8e-3 5.4e-5

Fandisk mean µ std σ
max. ang. 86◦ 7◦

min. ang. 44◦ 4◦

max. min
area 5.3e-3 1.1e-4

Figure 2.30. Dinosaur, |V | ≈
10k, |F | ≈ 20k

Figure 2.31. Human, |V | ≈
9k, |F | ≈ 18k

Dinosaur mean µ std σ
max. ang. 84◦ 14◦

min. ang. 42◦ 9◦

max. min
area 1.3e-3 9.3e-5

Human mean µ std σ
max. ang. 83◦ 13◦

min. ang. 43◦ 8◦

max. min
area 1.4e-3 5.4e-5
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Figure 2.32. Shark, |V | ≈
10k, |F | ≈ 20k

Figure 2.33. Snowman, |V | ≈
15k, |F | ≈ 31k

Shark mean µ std σ
max. ang. 98◦ 18◦

min. ang. 22◦ 13◦

max. min
area 4.6e-3 5.4e-7

Snowman mean µ std σ
max. ang. 91◦ 9◦

min. ang. 33◦ 13◦

max. min
area 3.6e-2 1.7e-8

We keep the surface area of all meshes at 4π for the sake of comparison. The statistics on the

maximal and minimal angles show that the meshes are not triangulated with equilateral triangles.

The triangles tend to be obtuse at the sharp corners, like the Fandisk or the fins of the Shark, or

at a tip with large discrete curvature, like the tips of the cactus or the ear of Spot or the tip of the

Dinosaur’s tail or the tip of the Human’s limbs.

Moreover, the size of the triangles can differ greatly. Except in the mesh of Blobby where the

maximal and minimal triangle areas are comparable, they can differ by a factor of 10 as in cactus

up to 1e4 in Shark, or 1e6 in Snowman. The triangles in the head of Shark are much smaller than

those in its body. The triangles are large on the bottom part of the Snowman while the triangles

on the Snowman’s face are very small.

Figure 2.34. shark’s head Figure 2.35. shark’s body
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Figure 2.36. Bottom part
of snowman

Figure 2.37. snowman’s face

We run 28 = 256 steps with fixed step size τ = 0.01. Regardless of how the step size is chosen

between [1e− 4, 0.1], the behaviors of the sphericity and the mean length-cross-ratio of the meshes

are similar.

The sphericity of all the meshes increase monotonically. No unidirectional elongation of the

mesh is observed. The gradients of all meshes except the Snowman at the first few steps indicate a

fast convergence to a sphere. The mean of the length-cross-ratio converges to one and the rates of

convergence are similar across all meshes. This fast convergence to a discrete unit sphere suggests

the strong robustness of the cMCF when it is applied across a wide variety of meshes, except the

long cylindrical meshes shown in the previous chapter.

Despite the large discrepancy in the maximal and minimal size of the triangles on the mesh as

well as the discrepancy between the maximal and minimal angles in these triangles, the maximal

ratios of angular distortion are less than 10%, except for the Cactus and Shark. That can be

explained by the large curvatures at the end of the branches of Cactus and the same for the tips of

the Shark’s fins.
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mean µ std σ
cactus 1.6e-1 6.4e-3
blobby 3.6e-2 5.7e-4
spot 8.5e-2 6.3e-3

fandisk 3.7e-2 1.2e-3
dinosaur 6.1e-2 1.9e-3
human 8.8e-2 4.8e-3
shark 1.9e-1 5.0e-2

snowman 3.3e-2 4.1e-4

Table 2.13. Mean and standard deviation of maximal ratio of angular distortion
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Note the the regions with high conformal factors in the original mesh can still be recognized on

the resulting sphere since they clearly show a high concentration of small triangle clusters:

Figure 2.38. Front
view of image on sphere
of Spot

Figure 2.39. Ears and
horns of image of Spot
on sphere
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Figure 2.40. Front
view of image on sphere
of dinosaur

Figure 2.41. Head
and hands of image of
dinosaur on sphere

Figure 2.42. Front
view of image on sphere
of snowman

Figure 2.43. Eyes and
mouth of image of snow-
man on sphere

Another noticeable drawback of the cMCF is, namely that, if there is a flat area covered with

triangles with large area on the original mesh, that part will remain relatively flat and noticeable on

the surface of the converging sphere. This can be improved by performing triangulation subdivision

specifically on that area. That enhances the sphericity of the resulting sphere.

We use the midpoint subdivision as it preserve the mesh quality by not creating larger and

smaller angles than in the existing meshes.

Figure 2.44. Midpoint subdivision

49



Figure 2.45. Original
bottom of Snowman

Figure 2.46. After
midpoint subdivision

sphericity
snowman 0.99826

snowman with subdivision on the bottom 0.99946

Table 2.14. Improvement on sphericity of image sphere

Figure 2.47. Bottom
part of resulting sphere
of snowman.png

Figure 2.48. Side view
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Figure 2.49. Bottom
part of resulting sphere
of snowman.png

Figure 2.50. Side view

2.1.4. cMCF without area rescaling. As stated in the mathematical derivations in chapter

1, Kazhdan, Solomon, and Ben-Chen showed that the cMCF is a gradient flow guided by an energy

functional consisting of a surface area functional and a conformality energy functional. Here we

demonstrate with experimental evidence that the surface area energy term is very dominant at the

beginning of the flow leading to a steady decrease in surface area, but once the surface area gets

small enough, the conformality energy term becomes dominant and minimizing the overall energy

functional leads to a rapid convergence to a discrete conformal sphere.

Without area rescaling, we apply cMCF on the ellipsoid meshes with r = 2, 4, 8 from the

previous section with a time stepsize τ = 0.001. We stop the run when the area of the mesh

decreases beyond our precision limit. In such cases, coordinates of vertices are so close to each

other and cannot be recorded accurately with the numerical limit of double precision. The area

of some triangles become negative since the lengths of edges are no longer accurate due to errors

exceeding .

Below are the plots for sphericity, conformality, and area of the meshes under cMCF. The

evolutions of the sphericity and the mean of the length-cross-ratio shown are totally different than

that under the cMCF with area rescaling, in the sense that the sphericity monotonically increases

to one over the iterations and the mean of the length-cross-ratio first deviates gradually from one

and then abruptly converges to one. As the meshes contract to a point, the meshes become more

spherical. Once the area is small enough (as the meshes are shrinking to a point with accelerating

rate), the conformality improves drastically within a few iterations before running into numerical

issues.
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Figure
2.51. 234th
step of
ellipsoid
r = 2

Figure
2.52. 182th
step of
ellipsoid
r = 4

Figure
2.53. 125th
step of
ellipsoid
r = 8

Also, the conformality measures, both the mean of the length-cross-ratio and the maximal ratio

of angular distortion, indicate a comparable level of discrete conformality to the original meshes as

in the case of cMCF with area rescaling (after converging to a unit sphere).

Although the sphericity of the ellipsoid meshes does not first decrease and then increase as

described in the previous section, cMCF without area rescaling is not a practical method to compute

a discrete conformal map from a given mesh on to a sphere. It is in general very hard to control

the evolution of the mesh once its surface area decreases drastically and the flow does not converge
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ellipsoids mean lcr after 512 steps
r = 2 1.000
r = 4 1.002
r = 8 1.006

(a) Mean of lcr without area rescaling

ellipsoids mean lcr in the final step
r = 2 1.000
r = 4 1.000
r = 8 1.000

(b) Mean of lcr with area rescaling

ellipsoids mean µ std σ
r = 2 3.8e-2 2.9e-4
r = 4 8.3e-2 1.7e-4
r = 8 1.1e-1 2.0e-3

(a) Angular distortion without area rescaling

ellipsoids mean µ std σ
r = 2 4.0e-2 1.9e-4
r = 4 7.2e-2 4.7e-4
r = 8 9.0e-2 6.3e-4

(b) Angular distortion with area rescaling

afterwards. So we need to abruptly terminate the flow for each mesh on a case-by-case basis which

makes this implementation impractical.

However, during the course of our investigation of cMCF, this observation from cMCF without

area rescaling suggested the following idea (see Figure 2.54): in the discrete setting, suppose we first

construct a function that maps the initial mesh onto a sphere and that function is not a discrete

conformal map. Then we start the cMCF on the spherical mesh with respect to the metric of

the original mesh (with area rescaling to keep the surface area constant). Will the spherical mesh

continue to stay spherical while converging to a discrete conformal sphere? If so, this modified

procedure of cMCF would be a much more robust method to compute the desired discrete conformal

map. A more important question is then if this procedure is applicable to meshes in which the cMCF

failed before.

Our answers to both of these question are affirmative. In brief, we apply an initialization

consisting of Tutte embedding and an inverse stereographic projection to compute a function that

maps an initial mesh onto a sphere, then we apply the cMCF on the spherical mesh using the

discrete metric of the initial mesh with area rescaling.

2.2. Initialization procedure of cMCF using Tutte embedding

In this section, we introduce an initialization procedure to improve the performance of cMCF.

Here we focus on the cMCF implementation applied to a discrete surface rather than the PDE

theory of cMCF applied on manifolds.

We are going to construct a function to map any genus-zero mesh onto a unit sphere and use

cMCF as a tool to make the map to the sphere discretely conformal. Given a mesh approximating

a closed surface of genus zero in R3, we first transform it into a topological disk by removing one
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Figure 2.54. cMCF versus Modified procedure cMCF

of its vertices and its associated 1-ring region. Then we apply the Tutte embedding to “flatten”

it into a convex polygonal region in R2 while maintaining the combinatorial information of the

original mesh. Next, we map it onto a unit sphere via the inverse stereographic projection and

add back the vertex removed earlier so that the mesh is again equivalent to a sphere topologically.

Subsequently we apply a Möbius transformation on this spherical mesh so that its vertices spread

evenly on the surface and position its center of mass at the origin. Finally, we initialize the cMCF

using the original stiffness matrix (with cotangent weights) and a new mass matrix calculated from

the triangulated sphere.

2.2.1. Tutte embedding. We begin with Tutte’s embedding theorem and then describe our

implementation of the algorithm. Tutte’s theorem is a discrete version of the mean value property

of continuous harmonic maps, i.e. the value at one point of this map is equal to the average of

its neighboring values. Given a triangulation T = (V,E, F ) of a disk where the vertices and edges

of T can be seen as a planar graph, Tutte [Tut63] proved that a 3-connected planar graph has a

“nice” embedding in the plane, in the sense that it can be drawn so that the boundary of every face

is a convex polygon and every edge is a straight line segment. To be concrete, Tutte’s embedding
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requires specification of coordinates of the boundary vertices of T as the convex prescribed boundary

and then finds the coordinates of the remaining vertices by solving a linear system of equations.

We state the Tutte theorem using the formulation given by Floater [Flo03b]

Theorem 2.2.1. Suppose T = (V,E, F ) is a triangulation of a convex polygon and that ϕ : DT →
R2 is a convex combination mapping which maps the the cyclically ordered boundary vertices v1, ·, vn
of T to the cyclically ordered vertices ϕ(v1), · · · , ϕ(vn) of an n-sided convex polygon. Then ϕ is

one-to-one.

2.2.2. Implementation and algorithm. First, we remove one vertex from the initial mesh.

There are many different choices we can make to select this vertex. A common way is remove

the vertex with the largest curvature. Over many numerical experiments we have done, the choice

of vertex does not affect the robustness of our mapping onto the sphere. Also, the numbering

of vertices and the associated combinatorial information in our data structure (using OpenMesh)

would change if any but the last vertex is removed. Therefore, we remove the last vertex in a given

mesh, as listed in its .off, .stl, .obj, or .ply file depending on its mesh file format.

vi
vk1

vk2vk3

vk4

vk5 vk6

Figure 2.55. 1-ring region of vertex vi includes vertex vi and all edges and faces
adjacent to it

Assume that our initial input mesh T = (V,E, F ) represents a closed surface S of genus zero,

i.e. |V | − |E|+ |F | = χ(S) = 2. Suppose that a vertex of valence k and its associated 1-ring region

are removed, the resulting mesh has a “hole” and is topologically equivalent to a disk. One way of

verifying this is by the Euler formula:

(|V | − 1)− (|E| − k) + (|F | − k) = |V | − |E|+ |F | − 1 = 1
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which matches with the Euler characteristic of a disk. Furthermore, the library OpenMesh provides

a command .is trimesh to effectively verify that the resulting mesh is still a proper triangulation.

Then we apply the Tutte embedding to map the resulting mesh onto a convex polygon. The

boundary vertices of the polygon are exactly those adjacent to the one vertex we removed, i.e.

vertices vkj for j = 1, 2, · · · , 6 as shown in the above figure. Our algorithm proceeds as follows:

(1) To each (directed) interior edge e = (i, j) ∈ E from vertex i to vertex j, assign a positive

weight wij such that ∑
j∈N(i)

wij = 1

whereN(i) is the list of vertices sharing an edge with the i-th vertex. Note that a symmetry

condition wij = wji is not required.

(2) To all other entries (i, j), assign wij = 0

(3) Embed the boundary vertices in the plane so that they form a closed convex polygon. We

position the boundary vertices uniformly on a unit circle in the xy-plane and set their

coordinates at a root of unity, depending on the valence of the vertex removed.

(4) Solve the two linear systems for the x and y coordinates of the n interior vertices:

(I −W )x = bx, (I −W )y = by

where W is a n×n matrix containing wij , and bx and by are vectors with non-zero entries

corresponding to vertices on the boundary.

We rewrite the above linear system in the following way,

∑
j∈N(i)

wijxj = xi, i = 1, · · · , V −B,

∑
j∈N(i)

wijyj = yi, i = 1, · · · , V −B,

xi = bxi , i = V −B + 1, · · · , V,

yi = byi , i = V −B + 1, · · · , V,

where B is the number of the set of vertices in the boundary of the convex polygon.

The solution to this linear system are the coordinates for all interior vertices in R2 while the

vertices are connected based on the combinatorics of the original triangulation T . Tutte’s theorem
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shows that this map is one-to-one. Also, the x and y coordinates of each interior vertex is a

convex combination of the x and y coordinates of its adjacent vertices respectively. Moreover,

the coefficient matrix of the above linear system is diagonally dominant due to the normalization

imposed on the row sum of wij . That guarantees the existence and uniqueness of the solution. But

the coefficient matrix might not be symmetric depending on our choice of wij .

2.2.3. Different choices of weight used in Tutte embedding. Here we compare two

commonly used weights for Tutte embedding: cotangent weights and graph Laplacian weights.

For cotangent weights, we normalize to have unit row sums, i.e.

w̃ij :=
cot(αij) + cot(βij)

`2
⇒ wij =

w̃ij∑
j∈N(i) w̃ij

Note that cotangent weights makes the coefficient matrix symmetric and these weights are only

positive if the triangulation of the mesh T = (V,E, F ) is Delaunay, i.e. no vertex in V is inside

the circumcircle of any triangle in F . These weights are used in computing discrete harmonic

maps [PP93]. Since harmonic maps on a closed genus-zero surface are equivalent to conformal

maps in both the continuous and discrete settings, so the resulting convex polygonal mesh from

Tutte embedding using cotangent weights should be conformal to the input mesh.

vj

vi

αij

βij

Figure 2.56. The two angles αij and βij associated to the weight wij of edge (i, j)

For the graph Laplacian, the weights are defined as

w̃ij =
1

valence of vertex vi

The definition automatically implies the condition of unit row sum
∑

j∈N(i)wij = 1. Although these

weights can be computed much more directly than the cotangent weights, they do not guarantee

that the coefficient matrix is symmetric. And more importantly, using the graph Laplacian weights
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does not produce a conformal mesh from Tutte embedding. To demonstrate these properties, we

first apply Tutte embedding onto the three simple meshes:

Figure
2.57. Trian-
gulated cube

Figure
2.58. Icosa-
hedron

Figure
2.59. Icosa-
hedron after
subdivision

|V | |E| |F | sphericity
cube 8 18 12 0.81

icosahedron 12 30 20 0.93
Subdivided icosahedron 42 120 80 0.98

Table 2.17. Cube, icosahedron, and subdivided icosahedron

The subdivided icosahedron is produced by performing midpoint subdivison on the icosahedron.

So it has four times as many faces as the icosahedron and it has total number of vertices 12 + 30 =

42. Then each newly added vertex is projected on the surface of the sphere circumscribing the

icosahedron. As a consequence, the subdivided icosahedron has sphericity closer to one than the

icosahedron.

We remove one vertex from each mesh and apply the Tutte embedding using cotangent weights

and graph Laplacian weights respectively.

At first glance, the resulting meshes of the icosahedron and its subdivision looks identical under

the Tutte embedding using cotangent and graph Laplacian weights respectively. But we can show

easily that the two linear systems involving the interior vertices are the same. (The boundary

vertices are fixed in both cases.)

For the graph Laplacian weights, the valence of all vertices in the icosahedron is 5. Hence

wij = 1/5 = 0.2 for all i, j. So the resulting matrix solving for x, y-coordinates of the interior

vertices has a diagonal of ones and five of the non-zero entries equal to −0.2 in each row.
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Figure 2.60. Tutte embedding using cotangent weights

Figure 2.61. Tutte embedding using graph Laplacian weights

For the cotangent weights, note that all triangles in an icosahedron are equilateral. Hence

wij = 2 cot(π/3) = 2/
√

3. The row sum is 5× 2/
√

3. After normalization, the resulting matrix has

a diagonal of ones and five of the non-zero entries equal to − 2/
√
3

10/
√
3

= −0.2 in each row. Indeed, for

a tetrahedron and an octahedron, which are uniformly triangulated by equilateral triangles and has

the same valence for all its vertices, their Tutte embeddings are the same using cotangent or graph

Laplacian weights.

We apply the Tutte embedding with different weights to meshes of larger size to observe the

difference in conformality. Here we use the meshes of sphere of radius 1, ellipsoid with r = 2, and

spot from the previous section. We show the mean of the length-cross-ratio below. This provides

numerical evidence to confirm that using the cotagent weights can better preserve the conformality

of the input mesh except for the triangles that were removed.

cotangent weights graph Laplacian weights
cube 0.9 0.9

icosahedron 0.83 0.83
Subdivided icosahedron 0.96 0.96

sphere 1 1.001 1.03
ellipsoid r = 2 0.998 1.01

spot 1.006 1.361

Table 2.18. Mean of length-cross-ratio after a Tutte embedding
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Other choices of weights which can be found in the literature include

(1) Edge length [MSF05] w̃ij = |e(i, j)| = ‖vi − vj‖
(2) Mean Value weights [Flo03a]: w̃ij =

tan(αij/2)+tan(βij/2)
‖vi−vj‖

(3) Cotangent weights normalized by edge lengths [PP93]: w̃ij =
cot(αij)+cot(βij)
‖vi−vj‖2

For generality, there is also an alternative method using authalic mapping proposed by Desbrun,

Meyer, and Alliez [DMA02].

2.2.4. Inverse stereographic projection. In the previous section, we obtain a convex polyg-

onal mesh in the xy-plane via a Tutte embedding. Now we project the planar mesh onto a

unit sphere via inverse stereographic projection, i.e. for a vertex with coordinates (u, v) on the

plane, its coordinates (x, y, z) on the unit sphere in R3 (except the north pole) are given by

f : R2 → S2\{(0, 0, 1)

f(u, v) = (f1(u, v), f2(u, v), f3(u, v)) =

(
2u

1 + u2 + v2
,

2v

1 + u2 + v2
,
−1 + u2 + v2

1 + u2 + v2

)

z = 0

(u, v)

(x, y, z)

(0, 0, 1)

Figure 2.62. Inverse stereographic projection from R2 to S2\{(0, 0, 1)}

The inverse stereographic projection is a conformal map. We can prove this and compute the

corresponding conformal factor. First, we write down the pushforward map of the tangent spaces

by computing the Jacobian of f , df : T(u,v)R2 → Tf(u,v)S2,

df(u, v) =

[
∂f

∂u

∂f

∂v

]
=

1

(1 + u2 + v2)2


2(−u2 + v2 + 1) −4uv

−4uv 2(u2 − v2 + 1)

4u 4v
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Given two tangent vectors ~a = (a1, a2),~b = (b1, b2) ∈ T(u,v)R2, their images under df are

df(~a) =

[
∂fi
∂u

a1 +
∂fi
∂v

a2

]
i=1,2,3

, df(~b) =

[
∂fi
∂u

b1 +
∂fi
∂v

b2

]
i=1,2,3

.

Using the fact that∥∥∥∥∂f∂u
∥∥∥∥2 =

3∑
i=1

(
∂fi
∂u

)2

= 4(1 + u2 + v2)2,

∥∥∥∥∂f∂v
∥∥∥∥2 = 4(1 + u2 + v2)2,

∂f

∂u
· ∂f
∂v

= 0,

we can compute the inner product

〈df(~a), df(~b)〉 =

∥∥∥∥∂f∂u
∥∥∥∥2 a1b1 +

(
∂f

∂u
· ∂f
∂v

)
(a1b2 + a2b1) +

∥∥∥∥∂f∂v
∥∥∥∥2 a2b2 =

4

(1 + u2 + v2)2
〈~a,~b〉.

Since df preserves the inner product on the tangent planes and hence the angle between tangent

vectors, f is a conformal map with conformal factor ρ(u, v) = 4
(1+u2+v2)2

. For (u, v) on the unit

circle such that u2 + v2 = 1, the scaling factor is equal to 1. Similarly, the scaling factor is 4 for

(0, 0) whereas the scaling factor is close to zero as (u, v) tend to infinity.

In our implementation, since all vertices in the planar mesh have coordinates satisfying u2 +

v2 ≤ 1 and hence z ≤ 0, their projection are all mapped onto the southern hemisphere. The

Tutte embedding clustered many vertices around the center (0, 0) of the convex polygon. As a

consequence, most vertices are concentrated around (0, 0,−1). Then the vertex removed earlier is

added back to the north pole of the unit sphere with coordinates (0, 0, 1). It is connected back to

the boundary vertices on the equator and the corresponding triangle faces are added back. So the

mesh is transformed back into a topologically sphere. But note that the triangles which are added

back are not conformal to the original mesh.

Figure 2.63. Side views of cube, icosahedron, and subdivided icosahedron from
inverse stereographic projection
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Figure 2.64. Bottom views of sphere 1, ellipsoid with r = 2, and spot from the
inverse stereographic projection

2.2.5. Centering of mass. Although the meshes obtained via the inverse stereographic pro-

jection have all its vertices on the sphere, most of its vertices and hence the center of mass (COM)

of the mesh are concentrated near the south pole. These meshes also have large area distortions in

triangles that were added back adjacent to the north pole. Since the discretization of the cMCF

flow uses finite element methods and its mass matrix depends on the triangle areas, the large

area distortion often leads to instability of the flow in practice. Applying cMCF cannot effectively

mitigate these large pieces of triangles around the north pole (regardless of the size of the time

steps).

Figure 2.65. Dinosaur - left: bottom view, right: side view
cMCF applied on the mesh from the inverse stereographic projection after 1024
iterations with step size 0.01. All vertices are still concentrated at the south pole

It is known that Möbius transformations from a sphere to itself, such as translation, rotation,

scaling, spherical inversions, and their compositions, are conformal maps. Given the meshes that

are obtained from the inverse stereographic projection, our goal here is to find a canonical way

to compute a spherical conformal parametrization of our mesh using Möbius transformations such
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that its vertices become evenly spreaded on a unit sphere and hence its COM is positioned at the

center of the unit sphere.

With the help of Prof. Patrice Koehl, we implemented the centering algorithm MöbiusCenter

introduced by Baden, Crane, Kazhdan [BCK18]. Their idea is to seek a spherical inversion that

moves the COM to the origin of the sphere and their algorithm is to perform the Gauss-Newton

method to minimize an energy functional measuring the distance between the COM of the mesh

and the origin. We refer the readers to their original paper for the details of the mathematical

derivation and the algorithm.

Here we use the same collection of meshes from section 2.1.3. We compare the COM and the

sphericity before and after the application of the MöbiusCenter algorithm.

Before COM After COM
cactus (0.11, -0.40, -1.03) (8e-12, -4e-11, -3e-11)
blobby (-0.08, -0.27, -1.12) (2e-14 8e-15, 3e-14)
spot (0.07, 0.00, -1.12) (-7e-15, 1e-15, 1e-14)

fandisk (-0.20, 0.33, -1.07) (-4e-13, 4.8e-12, -1e-12)
dinosaur (0.06, 0.31, -1.15) (3e-12, -2e-13, 5e-12)
human (-0.50, 0.46, -1.04) (2e-12, 1.5e-11, 7.5e-12)
shark (0.29, 0.00, -1.05) (-2e-11, 1e-12, 1e-11)

snowman (0.09, 0.28, -1.11) (2e-15, -6e16 7e-15)

Table 2.19. Center of mass before and after MöbiusCenter

Original Before After
cactus 0.61 0.95 0.997
blobby 0.84 0.93 0.998
spot 0.71 0.95 0.998

fandisk 0.61 0.94 0.9998
dinosaur 0.67 0.90 0.9994
human 0.61 0.85 0.9993
shark 0.50 0.94 0.998

snowman 0.86 0.93 0.998

Table 2.20. Sphericity of the original mesh, before, and after MöbiusCenter

After applying the MöbiusCenter algorithm, the COM of all meshes are centered almost exactly

at the origin (0, 0, 0) of a unit sphere. Moreover, the sphericity of all meshes increases as their

vertices spread more evenly on the sphere surface and hence the mesh volume increases. We can

see on the meshes below that their vertices are much more evenly distributed after MöbiusCenter.
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Figure 2.66. Dinosaur after MöbiusCenter - left: bottom view, right: side view

Figure 2.67. Spot after MöbiusCenter - left: bottom view, right: side view

2.2.6. Improvement on cMCF performance. Given the spherical meshes from the previ-

ous section, we start the cMCF on them with respect to the metric of the original mesh, before the

Tutte embedding is applied. At the same time, we apply area rescaling in each step so that the

surface area of the mesh is kept constant during the evolution. In the following, we demonstrate

with numerical evidences that these spherical meshes are shown to converge to a unit sphere that

is discretely conformal to the original mesh under the modified procedure of cMCF.

In this section, we present a collection of meshes on which cMCF either does not converge or

does not produce a discrete conformal map to a unit sphere. Some examples such as a very long

ellipsoid and rod with grooves were shown in the beginning of this section. We introduce here one

more mesh that resembles a bicycle’s crank arm. The triangulation of this mesh consists largely of

long and thin triangles.
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Figure 2.68. Bicycle’s
crank arm

Figure 2.69. Zoomed-
in view of crank arm’s
triangulation

Bicycle’s crank arm mean µ std σ
max. ang. 99◦ 19◦

min. ang. 3.4◦ 2.7◦

max. min
area 4.5e-4 1.5e-6

Rod with grooves (fig 2.23) mean µ std σ
max. ang. 111◦ 34◦

min. ang. 19◦ 14◦

max. min
area 3.9e-3 8.1e-6

We apply on the ellipsoid with r = 32, rod with grooves, and bicycle’s crank arm. Both cMCF

and the modified cMCF procedure with an additional initialization of mapping the initial mesh

onto a unit sphere via the Tutte embedding (with cotangent weights) and the inverse stereographic

projection. The step size chosen is τ = 0.01 for 29 = 512 iterations. A step size larger than

that might run into risk of errors exceeding the double precision limit, a step size in the range

[1e−4, 0.1] shows similar flow behaviors, and a step size smaller than 1e−4 is inefficient to produce

any discernible changes on the meshes over the given iterations.

Below are the plots of sphericity and the mean of the length-cross-ratio. The suffix - tutte

indicates that the modified cMCF procedure is applied. We also show the basic statistics for the

maximal ratio of angular distortion in all triangles.

For the ellipsoid with r = 32 and the Bicycle’s crank arm, we can conclude that both cMCF and

the modified procedure eventually converge to a unit sphere that are comparably discrete conformal

to the initial mesh. But the modified procedure transforms the mesh into a nearly unit sphere after

the first step and this converges to a discretely conformal sphere much faster in contrast to the

cMCF.

For the Rod with grooves, we demonstrated in the previous section that the cMCF never

converges, and the mesh is stretched infinitely long into a line. In the modified procedure, our
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initialization step of mapping the mesh onto a unit sphere does not work effectively (with a sphericity

of approximately 0.7). Not only does restarting cMCF on this mesh helps it converge to a unit

sphere, the resulting sphere is also discrete conformal to the initial mesh.

Figure 2.70. Front view of resulting sphere of ellipsoid with r = 32
left: cMCF, right: modified procedure of cMCF

Figure 2.71. Front view of resulting sphere of bicycle crank arm
left: cMCF, right: modified procedure of cMCF
The long thin triangles are still visible on the sphere
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Figure 2.72. The curves of e32 - tutte and Crank Arm - tutte overlap each
other almost completely

68



Flow mean µ std σ

ellipsoid with r = 32
1 2.1e-1 1.4e-1
2 1.5e-1 7.0e-2

Rod with grooves
1 1.7 3.85
2 5.7e-1 5.8e-1

Bicycle’s crank arm
1 1.8e-1 1.6e-2
2 1.9e-1 6.4e-1

Table 2.22. 1 : cMCF, 2 : cMCF - tutte
Mean of maximal ratio of angular distortion

Figure 2.73. Spherical
mesh of rod with grooves
after initialization step

Figure 2.74. Resulting dis-
crete conformal sphere of rod
with grooves

Next, we apply both cMCF and the modified procedure on meshes with multiple protrusions

(crystal chamber and deer) and meshes of large size (armadillo). The pictures and the statistics

below show that all three meshes are not close to be any uniformly triangulated. The shape and

size of the triangles vary largely in different parts of the meshes. The pillars in the crystal chamber

and the antlers in the deer have high conformal factors when the meshes are being mapped discrete

conformally onto a unit sphere.

The step size chosen is τ = 0.001 for 29 = 512 iterations. A step size larger than that causes

numerical instability in the flow and the flow does not converge. A step size smaller than that takes

much more iterations for the flow to converge and is inefficient. Below are the plots of sphericity

and the mean of the length-cross-ratio. The suffix - tutte indicates that the modified cMCF

procedure is applied. We also show the basic statistics for the maximal ratio of angular distortion

in all triangles.
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crystal chamber mean µ std σ
max. ang. 90◦ 11◦

min. ang. 21◦ 13◦

max. min
area 8.4e-3 6.2e-6

deer mean µ std σ
max. ang. 96◦ 20◦

min. ang. 30◦ 12◦

max. min
area 3.7e-3 3.1e-6

armdillo mean µ std σ
max. ang. 83◦ 10◦

min. ang. 43◦ 7◦

max. min
area 3.0e-4 2.8e-11

Figure 2.75. Crystal chamber,
|V | ≈ 24k, |F | ≈ 49k

Figure 2.76. Deer,
|V | ≈ 57k, |F | ≈ 113k

Figure 2.77. Crystal
chamber’s platform

Figure 2.78. Deer’s body

Figure 2.79. Crystal
chamber’s pillar

Figure 2.80. Deer’s atlas

70



Figure 2.81. Ar-
mdaillo,
|V | ≈ 173k, |F | ≈ 346k

Figure 2.82. Armadillo’s face

Figure 2.83. Arm-
daillo’s body

Figure 2.84. Ar-
madillo’s hand

All three meshes under the cMCF tend to converge to a unit sphere over the course of iterations.

But the modified procedure is more effective in mapping all three meshes onto a unit sphere that

is discrete conformal to the original meshes, both in terms of sphericity and discrete conformality.

For the crystal chamber and the armadillo, the modified procedure achieves significantly better

discrete conformality than the cMCF.

Moreover, we show pictures of the spherical meshes (after applying Tutte embedding and the

inverse stereographic projections) and the resulting spheres after applying the cMCF. These provide

pictorial evidence that these spherical meshes stay spherical under the cMCF while converging to

sphere that are discretely conformal to the original mesh. In this sense, our modified procedure has

used the cMCF to improve the discrete conformality of the maps to the spherical meshes.
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Figure 2.85. The curves of crystal chamber - tutte, deer - tutte, and
Crank Arm - tutte completely overlap
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Flow after initial step after 512 iterations

Crystal chamber
1 0.797 0.982
2 0.9993 0.9994

Deer
1 0.659 0.928
2 0.9983 0.9998

Armadillo
1 0.688 0.988
2 0.9999 0.9999

Table 2.24. Sphericity - 1 : cMCF, 2 : cMCF - tutte

Flow mean µ std σ

Crystal chamber
1 3.0e-1 3.6e-2
2 1.5e-1 1.9e-2

Deer
1 4.5e-1 4.5e-1
2 3.0e-1 5.1e-1

Armadillo
1 1.3e-1 5.0e-3
2 2.7e-2 7.2e-4

Table 2.25. 1 : cMCF, 2 : cMCF - tutte
Maximal ratio of angular distortion

The deer after 512 iterations under cMCF is not yet spherical and it takes in total of 2048

iterations for it to converge to a sphere (with sphericity of 0.9993), that is as round as under the

modified procedure after 512 iterations. This advantage of computation efficiency using the modified

procedure can be illustrated clearly in the case of the armadillo, which has more than 3 times

the number of vertices and faces than the deer. The initialization step in the modified procedure

takes only around 10 seconds to produce a discretely conformal spherical mesh of armadillo. Using

512 iterations of the original cMCF to evolve the armadillo takes more than 1300 seconds (or 20

minutes) but still fails to obtain a mesh that is spherical. These running times, in seconds, were

measured on a laptop computer using an Intel i9 CPU processor running at 2.9GHZ, with 32GB

of RAM.

Figure 2.86. Evolution of deer after 512 (left) and 2048 (right) iterations under cMCF
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Figure 2.87. Left: Evolution of armadillo after 512 iterations under cMCF
Right: Sphericalized armadillo after the initial step of the modified procedure

Figure 2.88. Left: Sphericalized crystal chamber after the initial map to the sphere
Right: after 512 additional iterations under cMCF
The cMCF has improved the discrete conformality on the spherical mesh

Figure 2.89. Left: Sphericalized deer after the initial map to the sphere
Right: after 512 additional iterations under cMCF
The cMCF has improved the discrete conformality on the spherical mesh
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2.3. Sphericalized cMCF - using cMCF to construct a homotopy of degree one maps

In this section, we give a new algorithm named “Sphericalized cMCF” that uses the cMCF to

construct a homotopy from a degree one map to a homeomorphism from a unit sphere to a unit

sphere. In brief, first we parameterize an embedded surface M via the parametrization map f

applied to the unit sphere. Then we apply the given degree one map g (not necessarily injective)

to map M onto a unit sphere. We apply the cMCF on the unit sphere using the induced metric on

M . The cMCF is performed with area rescaling and spherical projection to ensure that the signed

surface area remains constant and the image is on a unit sphere throughout the flow. Assuming that

cMCF converges, the resulting mapping from the surface M onto the unit sphere is a conformal

map. In this case, the degree one map g ◦ f = H0 ◦ f is homotopic to the homeomorphism

φ := HT ◦ f : S2 → S2. More specifically, this proposed algorithm uses the cMCF to construct a

homotopy Ht ◦ f : S2 × [0, 1] → S2 with (H ◦ f)(x, 0) = (g ◦ f)(x) and (H ◦ f)(x, T ) = φ(x) for

x ∈ S2. See Algorithm 1 and Figure (2.90).
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Algorithm 1 Sphericalized conformalized Mean Curvature Flow

Input: A degree one map g, an embedded surface M (image of a unit sphere S2 via

parametrization map f), iteration time step τ , maximal number of iterations I (e.g.

I = 29 = 512), tolerance ε (e.g. ε = 10−2) for the logarithmic value of the mean absolute error of

the length-cross-ratio from one

Output: A homeomorphism φ : S2 → S2 and a homotopy from g ◦ f to φ

1: procedure Sphericalized cMCF(g)

2: Apply g to map M onto a unit sphere S2

3: Initialize cMCF on the resulting unit sphere S2 using the induced metric defined on M

4: Set time t = 0 and iteration count n = 0

5: while the logarithm of the mean absolute error of the length-cross-ratio from one is larger

than ε, i.e. the unit sphere S2 is not nearly conformal to M do

6: if n > I then

7: break and exit for loop

8: An iteration of cMCF on S2 with time step τ and set t← t+ τ

9: Rescale resulting surface from cMCF such that its signed surface area is equal to 4π

10: Project onto the unit sphere S2 via p 7→ v
‖v‖ for each point on the surface

11: Update the logarithmic value of the mean absolute error of the length-cross-ratio from

one

12: n← n+ 1

13: Obtain a conformal map from M to S2; its composition with parametrization map f

results in φ

We first lay out the theoretical framework for our algorithm in the setting of continuous surfaces

and then present results in the discrete setting from our numerical experiments that use the Gauss

map as a degree one map. The Gauss map is used since it is natural and can easily be implemented

in contrast to other degree one maps. There are many variations on how to compute a discrete

Gauss map on a mesh. Here the Gauss map we compute assigns to each vertex a unit normal vector

which is a sum of unit normal vectors of adjacent faces weighted by their areas.

2.3.1. Theoretical framework. To begin with, we recall the definitions of degree of a map

between smooth surfaces, homotopy of maps, and state the Hopf theorem. We refer readers to an

in-depth treatment of these concepts in the textbooks [Hat00], [Mil65].
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Figure 2.90. Sphericalized cMCF - Homotopy from a degree one map to a home-
omorphism, defined from a unit sphere to a unit sphere

Throughout this section, we assume M,N to be smooth oriented, compact, connected surfaces

without boundary to stay relevant to our setting. We stress that the following concepts are more

general and they can be defined in a broader context of manifolds of higher dimensions. Let

M × [0, T ] denote (x, t) with x ∈ M and 0 ≤ t ≤ T (we can think of it as a smooth three-

dimensional manifold bounded by two “copies” of M). Two mappings f, g : M → N are called

smoothly homotopic, denoted by f ∼ g, if there exists a smooth map F : M × [0, T ]→ N with

F (x, 0) = f(x), F (x, T ) = g(x)

for all x ∈ M . This map F is called a smooth homotopy between f and g. Note that the relation

of smooth homotopy is an equivalence relation among maps from M to N .

Second, we define the degree of a map f : M → N . Let x ∈M be a regular point of f , meaning

that dfx : TMx → TNf(x) is a linear isomorphism between the oriented vector spaces. The sign of

df at x is defined to be +1 or −1 depending on if df preserves or reverses orientation. For any

regular value y ∈ N , an integer called the local degree of f at y is defined by a summation formula

deg(f ; y) =
∑

x∈f−1(y)

sign(dfx)

77



One can show that the degree of the map f does not depend on the choice of the value y and

depends only on the map f , i.e. deg(f) = deg(f ; y) for any y ∈ N . Furthermore, one can show

that homotopic maps have the same degree, i.e. f ∼ g ⇒ deg(f) = deg(g). The degree is

always an integer. It follows from the definition that deg(f) is positive if f is orientation-preserving

and negative if f is orientation-reversing. Intuitively, deg(f) represents the number of times that

the manifold M wraps around N under the mapping f . For deg(f) = 1, a degree one map f does

not need to be injective in general. But all orientation-preserving homeomorphisms are degree one

maps.

Lastly, we recall the Hopf theorem

Theorem 2.3.1. If M is a connected and oriented n-dimensional manifold without boundary,

then two continuous maps from M onto a n-sphere f, g : M → Sn are smoothly homotopic if and

only if they have the same degree.

Note that the direction f ∼ g ⇒ deg(f) = deg(g) is obvious from the previous discussion

on degree. The Hopf theorem shows that the converse statement is also true. In our application,

both M and the sphere are two-dimensional.

2.3.2. Proof of homotopy. Using the Hopf theorem, we can give a short proof that in our

application (2.90) the degree one map H0 := g is smoothly homotopic to the conformal homeomor-

phism HT := φ obtained by applying cMCF with area rescaling.

Proof. Since φ : M → S2 is a conformal homeomorphism, it is an orientation preserving

homeomorphism. Hence deg(φ) = 1. Since the map g is also degree one, g and φ are homotopic by

the Hopf theorem.

2.3.3. Experimental results in homotopy construction. we present results from our nu-

merical experiments in constructing a homotopy using our sphericalized cMCF algorithm. Before

doing so, we recall the definition of Gauss map in the continuous setting. Given a surface X in R3,

the Gauss map G : X → S2 is a continuous map defined by the normal vectors of X, i.e. for each

point x ∈ X, G(x) is its unit normal vector which lies on a unit sphere. The Gauss map is globally

defined on X if and only if X is orientable. The Gauss map applied on a closed compact orientable

surface S in R3 with positive Gaussian curvature everywhere is bijective (or more precisely, a local

diffeomorphism in this case). Indeed one can show that if S has a point p with negative Gauss
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curvature, the Gauss map defined on S is not injective, i.e. there is another point q ∈ S with q 6= p

such that G(q) = G(p).

We recall a fundamental result from topology, Alexander’s theorem.

Theorem 2.3.2. Every smooth embedded 2-sphere in R3 bounds a smooth embedded 3-ball.

The following proposition holds in both discrete and continuous settings

Proposition 2.3.1. The Gauss map has degree one when it is applied on a closed orientable

surface of genus zero.

Proof. We denote the Gauss map on M as g1 : M → S2. By Alexander’s theorem, we can

deform M continuously to a unit sphere to obtain a homotopy from g1 to the identity map I : S2 →
S2, i.e. g1 ∼ I. Since deg(I) = 1, so is the degree of the Gauss map. �

More generally, if the Gauss map is defined globally on a closed smooth orientable surface S, its

degree is equal to the half of the Euler characteristic of S. See Chapter 6, Theorem 1 in [Mil65].

Our algorithm is as follows. First, given an initial mesh M of genus zero, we use the Gauss

map to construct a degree one map that maps all vertices of M onto a unit sphere S2. Second, we

apply the cMCF on the resulting unit sphere from the Gauss map applied on M . We implement

the flow using the original stiffness matrix (with cotangent weights) from M . Each iteration of

the intermediate cMCF step is performed with area rescaling and spherical projection ~v 7→ ~v
‖~v‖

such that the signed surface area remains 4π and all vertices remain on a unit sphere during the

flow. At each cMCF step, we calculate a new mass matrix from the triangulated sphere. If the

flow converges, we then obtain a discrete conformal map from initial mesh M onto S2. As a result,

we have constructed a homotopy from the degree one map (Gauss map in this case) to a discrete

conformal map between the mesh M and a unit sphere S2. See Figure (2.91).

Here we apply the “Sphericalized cMCF” algorithm on four meshes, i.e. Blobby and Spot from

previous section and two new meshes, Ghost and Bunny, which have similar mesh size and quality

as blobby and spot:
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Figure 2.91. Homotopy of a degree one map to a conformal homeomorphism onto
a unit sphere

Figure 2.92. ghost, |V | ≈
1.6k, |F | ≈ 3.3k

Figure 2.93. bunny, |V | ≈
2.6k, |F | ≈ 5.2k

ghost mean µ std σ
max. ang. 92◦ 13◦

min. ang. 34◦ 8◦

max. min
area 1.4e-2 2.8e-4

bunny mean µ std σ
max. ang. 91◦ 22◦

min. ang. 35◦ 12◦

max. min
area 6.5e-3 1.3e-4
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After applying the Gauss map as a degree one map on these four meshes, we obtain four

spherical meshes having many of their faces overlapping or intersecting with each other (colored in

red).

Figure 2.94. Gauss
map on blobby

Figure 2.95. Gauss
map on spot

Figure 2.96. Gauss
map on ghost

Figure 2.97. Gauss
map on bunny

We run 28 = 256 steps of cMCF with fixed step size τ = 0.01 (or any step size in the range of

τ ∈ [1e − 4, 1e − 2] with more iteration steps) using the original stiffness matrix from the initial

mesh while keep updating mass matrix from the triangulated sphere in each iteration.

The overlapping or self-intersecting triangular faces make it more challenging to compute actual

surface area and volume of the spherical meshes. So instead of computing the sphericity, we compute

the radius variance as a measure for the roundness of the meshes. If all vertices of the meshes lie

on a unit sphere, the radius variance is zero. Below are plots for the radius variance and the mean

of the length-cross-ratio.
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Also, we show evolution of the meshes at the 5th, 10th, 20th, and 256th time step. These

illustrate the different steps in the homotopy we constructed from the degree one map (Gauss map)

to a conformal map. The red region on the meshes shown are either overlapping or self-intersecting

faces while the grey and black regions do not contain overlapping or self-intersecting faces. The

number of either overlapping or self-intersecting faces at different time step are listed in a table.

In all four meshes, the radius variance stay between [1e− 1, 1e− 6] indicating that the meshes

stay spherical and during the homotopy via cMCF. At the same time, the mean of length-cross-ratio

rapidly converges to one after the first 100 steps of the iteration. This indicates a convergence to

a conformal map from the initial sphere obtained by the Gauss map to a spherical mesh that is

discretely conformal to the original input mesh.

More importantly, the existence of overlapping or intersecting faces produced by the Gauss map

indicates that the degree one map is not injective in this case. But these face “unfold” and the

corresponding number of faces with intersections decreases steadily during the homotopy. Finally

the given degree one map becomes a conformal homeomorphism which is a bijective map.
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after Gauss Map 5th step 10th 20th step 256th step
blobby (|F | = 4050) 2586 496 28 0 0
spot (|F | = 5856) 5508 3574 629 0 0
ghost (|F | = 3392) 1857 899 211 0 0
bunny(|F | = 5168) 4466 2882 1582 0 0

Table 2.27. Number of overlapping or intersecting faces
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Figure 2.98. Blobby’s evolution at 5th, 10th, 20th, and 256th step

Figure 2.99. Spot’s evolution at 5th, 10th, 20th, and 256th step

Figure 2.100. Ghost’s evolution at 5th, 10th, 20th, and 256th step

Figure 2.101. Bunny’s evolution at 5th, 10th, 20th, and 256th step
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CHAPTER 3

3D reconstruction of nuclear fusion hotspot x-ray emission

distributions from very few two-dimensional projections

In this chapter, we present our work in limited view computer tomography on inertial con-

finement fusion experiments at the National Ignition Facility. These experiments aim to achieve

thermonuclear ignition of a deuterium-tritium plasma by performing nuclear fusion. Given very few,

for example two or three, 2D x-ray projection images from different directions in the experiment,

we apply the Algebraic Reconstruction Technique to reconstruct the 3D x-ray emission distribution

of the hotspot region in which the fusion process takes place. Moreover, we infer the 3D electron

temperature distribution of the plasma using different x-ray energy channels. These 3D electron

temperature measurements can help to further our understanding of the nuclear fusion physics.

First, we give an overview on the fusion experiments setup and explain briefly the underlying

physics. Then we describe the mathematical theory of the Algebraic Reconstruction Technique

algorithms (abbreviated as ART). Finally, we present results on 3D x-ray reconstructions and 3D

electron temperature measurements in both our synthetic and experimental data studies.

3.1. Introduction to Inertial Confinement Fusion at the National Ignition Facility

Nuclear fusion is to combine atomic nuclei of low atomic number into a heavier nucleus and

gain energy. The inertial confinement fusion (ICF) experiments attempt to initiate nuclear fusion

using laser beams to heat and compress a mixture of deuterium-tritium (D-T) gas, which are the

two heavy hydrogen isotopes and the fuel to the nuclear fusion. The products of the D-T reaction

are an alpha particle (helium nucleus) and a neutron (see figure 3.1). Since the helium nucleus and

the neutron have a slightly smaller total mass than the sum of the masses of the deuterium and

tritium nuclei, the difference in mass is released as kinetic energy given by E = ∆mc2, where ∆m

and c are the change in mass and the speed of light respectively. This fusion process is conducted

at the National Ignition Facility (NIF) in the Lawrence Livermore National Laboratory (LNLL).

As of this writing, It has the world’s most energetic laser with 192 beams which can deliver nearly
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2 million joules of ultraviolet laser energy in nanosecond pulses to a gold cylindrical shell, known as

hohlraum, in the target chamber’s center. A D-T fuel pellet is located in the center of the hohlraum

(See figures 3.2, 3.3, 3.4).

Figure 3.1. nuclear fusion of deuterium-tritium mixture
source: nuclear fusion on Wikipedia

Figure 3.2. NIF’s basic layout (size of three football fields) and the target chamber
source: National Ignition Facility on Wikipedia

Figure 3.3. Laser beams of NIF shoot at hohlraum, different colors indicate that
laser beams enter into the hohlraum with different incident angles
source: LLNL NIF user guide
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Figure 3.4. Illustration of target capsule inside hohlraum with laser beams, the
capsule contains deuterium-tritium (D-T) mixture that fuels the ignition process
source: LLNL NIF & Photon Science

The ICF experiment at NIF uses the lasers to heat the gold inner walls of a hohlraum to create a

hot plasma which radiates a uniform bath of soft x-rays. When these X-rays rapidly heat the outer

surface of the fuel pellet, they cause a high-speed ablation, or a “rocket-like” blowoff, of the capsule

surface materials . By Newton’s third law of motion, this ablation implodes the fuel capsule such

that the D-T gas is highly compressed to extreme density and temperature, roughly at a density

100 times that of solid lead and 100 million degrees Celsius (hotter than the center of the sun).

This capsule implosion forms a central hotspot (ideally in a symmetric fashion) in which the nuclear

fusion reaction takes place (see figure 3.5). The stagnation point, or “bang time”, refers to the time

when the capsule’s implosion reaches its maximum compression and the implosion kinetic energy

is turned into the fuel thermal energy of the hotspot. Ideally, at this stage, the plasma ignites and

the compressed D-T fuel burns before it can disassemble. This so-called Ignition occurs when the

thermonuclear burn spreads through the compressed fuel. In the case of ignition, the energy gained

is more than the input energy. For more details in the underlying physics of the ICF experiments,

we refer our readers to [LAB+04].

Figure 3.5. Explanation of the ICF experiment at NIF
source: LLNL NIF & Photon Science

87

https://lasers.llnl.gov/science/icf
https://lasers.llnl.gov/science/icf/how-icf-works


So far NIF experiments have shown to have fuel gains greater than unity, where the energy

generated through the fusion reaction in ICF plasma exceeds the amount of energy deposited into

the D-T fusion fuel and the hotspot [HCC+14]. Latest experiments have demonstrated alpha-

particle self-heating which is a process essential for achieving ignition, i.e. the fusion neutron

yield produced due to the alpha-particle heating exceeds that produced by the work done on the

fuel [HCC+16].

At the same time, in order to measure the extreme physical properties of the ICF hotspot,

such as the implosion velocity of the fuel capsule, dow-scattered neutron, and X-ray emissions, a

wide range of diagnostics methods and instruments were developed and fielded at the NIF target

chamber. Nearly 120 different diagnostics are available to both internal and external NIF users. A

complete list of NIF diagnostics and their respective diagnostics can be found at [Laba].

In order to further our understanding of the stagnated plasma and benchmark the hydrody-

namics simulations in ICF experiments, it is crucial to make 3D measurements of different physical

quantities of the hotspot. These include its shape and distributions of X-ray and neutron production

as well as density, and pressure. Not only can these 3D measurements help to characterize symme-

try of the hotspot and quantify the significance of radiation loss, they can also provide important

parameters to determine the proximity to ignition. In the context of the ICF experiments, previous

work done on 3D reconstructions of neutron/x-ray source from limited number of 2D projections

uses an iterative generalized expectation-maximization algorithm to find the maximum likelihood

estimation of the 3D neutron/x-ray distribution [VDF+14], [VDM+15]. An alternative approach

is to use spherical harmonics as basis functions to infer the 3D neutron and x-ray distributions from

a few available projections in order to compare measured data with simulations [VDF+17]. These

methods were tested using neutron images from the Neutron Imaging System at NIF [MBB+12]

and x-ray pinhole images at the OMEGA Laser in Rochester, New York [BBC+97]. In addition,

a different diagnostic called multi-monochromatic x-ray imager (MMI) uses a multi-layered Bragg

mirror to record a collection of hotspot images across slightly different energy ranges. After post-

processing, these MMI data can be used to infer the shape and volume of the hotspot and its 3D

temperature and density distributions [NMF+12].

Our approach focuses on 3D reconstruction of the hotspot x-ray emission distribution from

limited number of 2D time-integrated x-ray images at stagnation. Given images taken at different

lines-of-sight (LOS), we transform the reconstruction process into solving a sparse linear algebraic
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Figure 3.6. Our goal is to reconstruct a 3D electron temperature distribution of
the plasma in the ICF hotspot using very few 2D X-ray images from different lines-
of-sight.

system in which the source distribution constitutes the unknowns, see step 1 in figure (3.6). This

is analogous to solving a “3D Sudoku puzzle” by accordingly filling in the unknown values based

on their known projection values (sums), as shown in figure (3.7). The matrix involved is usually

very large in size and highly deficient in rank. So a direct matrix inversion is not possible and

the solution is in general not unique. One technique of efficiently solving such linear system with

limited view tomography is the Algebraic Reconstruction Technique (ART). Naturally the more 2D

projection images we have from different LOS, the more accurate our reconstruction will be. But

due to the limited space inside the target number at the NIF, only limited number of diagnostics

can be fielded in an experiment. Our project focuses on reconstruction using 2D projections from

two or three LOS, which is generally the number of x-ray images we can use as input for 3D

reconstruction.

Furthermore, by varying filtration materials in front of the image detector, we are able to

take images of different x-ray energy. Then we can reconstruct x-ray distributions in different

energy channels and compute their ratio to infer a 3D electron temperature (Te) measurement of

the hotspot, see step 2 in figure (3.6). As input to our 3D x-ray reconstruction, we use the 2D

time-integrated x-ray images from penumbral imaging, which have high signal-to-noise ratio and
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Figure 3.7. Reconstruction of 3D X-ray emission distribution using very few 2D
X-ray projections via ART which is analogous to solving a “3D Sudoku” puzzle

resolution [BHF+16], [BASA+17]. Before we present our x-ray image data, we briefly discuss the

underlying mathematical theory of the Algebraic Reconstruction Technique.

3.2. Algebraic Reconstruction Technique (ART)

3.2.1. Background. In computed tomography, an essential problem is to reconstruct a set of

unknown values based on the given observation values, e.g. projection. A simple example (figure

3.8) is to solve for four unknowns, given projection values of four rays.

Figure 3.8. A Sudoku puzzle - reconstruction of unknowns from known projections
Source: Per Christian Hansen, Technical University of Denmark

This is equivalent to solving a system of linear equation Ax = b for an unknown vector x. The

one entries in the i-th row of the matrix A indicate the intersections of the i-th projection ray with
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the unknowns and the i-th entry of the vector b gives the corresponding projection value. In general,

the matrix A can be of dimension m×n where m is the number of rays and n the number of known.

In the limited-view computer tomography where only few projection rays are given, we can assume

m ≤ n and the matrix A to be sparse. In our illustrative example, the matrix A is rank-deficient

and hence there are infinitely many solutions given by x =
(

1 3 2 4
)T

+ k ·
(
−1 1 1 −1

)T
for any k ∈ R, where the vector

(
−1 1 1 −1

)T
can be replaced with an arbitrary component

in the null space of A. This shows that the uniqueness of the solution can be characterized by the

rank of the matrix A. From linear algebra, we know that in the case of n = m, the solution is

uniquely determined if A is full-rank (and hence invertible, the solution is then x = A−1b).

More importantly, a geometric interpretation in solving for n knowns with m given projections

is that the i-th equation from the linear system, ri · x = bi with ri being the i-th row vector in A

and the i-th entry in vector b, defines an affine plane in Rn. The solution x∗ lies in the intersection

of all hyperplanes, i.e.

x∗ ∈
N⋂
i=1

{
x ∈ RN | ri · x = bi

}
, where A :=

(
r1 r2 · · · rN

)T
and b :=

(
b1 b2 · · · bN

)T

In the case of m = n = 2 and A =

a11 a12

a21 a22

, the intersection of the two straight lines in R2 is

the solution (figure 3.9).

Figure 3.9. Geometric interpretation of Ax = b in m = n = 2
Source: Per Christian Hansen, Technical University of Denmark

3.2.2. ART. The Kaczmarz algorithm is one of the most basic iterative solvers for the linear

systems arising computer tomography. It is also known as the Algebraic Reconstruction Technique

(ART). [Nat01], [Her09], [Buz08]. The original algorithm is due to Kaczmarz [Kac] and the

name ART originates from the seminal paper by Gordon, Bender, and Herman [GBH70]. The
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ART algorithm can be best described using the geometric interpretation above: Given some initial

guess x0 in Rn in the solution space, the current iterate is projected from the previous iterate

orthogonally on one of the affine hyperplane ri · x = bi (figure 3.10). The common practice is to

perform the projections following cyclically the given row order of the matrix A of dimension m×n,

i.e. i = 1, 2, · · · ,m, 1, 2, · · ·m, 1, 2, · · · .

Figure 3.10. Successive orthogonal projection onto hyperplanes in ART
Source: Per Christian Hansen, Technical University of Denmark

Algorithm 2 Basic Kaczmarz algorithm

Input: initial vector x(0), matrix A, vector b ,and number of iteration n

Output: n− th iterated vector x(n)

1: procedure Kaczmarz(x(0), A, b n)

2: for k = 1→ n do

3: i = k (mod m) . cyclic row sweep

4: Compute perpendicular vector from x(k) to hyperplane
{
x ∈ RN | ri · x = bi

}
5: vi(x

(k)) = bi−ri·x(k)
‖ri‖22

ri

6: x(k+1) ← x(k) + vi(x
(k)) . Compute projection vector and update

Note that each iteration corresponds to one projection in the algorithm. One sweep through all

m rows of A consists of m iteration. Kaczmarz showed convergence in his paper, i.e. the algorithm

produces monotonically improving approximations as the iteration number increases. However,

since the Kaczmarz algorithm accesses rows of the matrix sequentially (one row per iteration),

the convergence rate of this algorithm depends on the selection of the row ordering. This can be

illustrated using the geometric interpretation (see figure 3.11). So in general it is difficult to quantify

the associated convergence rate. Various linear convergence rates are proved [Deu85], [DH97]. But

an undesirable ordering of the rows can significantly worsen the algorithm performance. Therefore,
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alternative choices of sweeps through the rows of the matrix were suggested and shown in some

cases to improve the rate of convergence:

• Symmetric Kacmarz [BE79]: row sweep from top through bottom and back to top, then

repeat, i.e. i = 1, 2, · · · ,m− 1,m,m− 1, · · · , 1, 2, · · · .
• Randomized Kacmarz [SV08]: select row i randomly, possibly with probability propor-

tional to the row norm ‖ri‖2

Figure 3.11. ART convergence rate depends on the ordering of rows in the matrix
Source: Per Christian Hansen, Technical University of Denmark

Assume that A is invertible (m = n and A has full rank) and all rows of A are scaled to unit

2-norm (ri → ri
‖ri‖2 and hence ‖ri‖22 = 1 for all i). By considering the Kaczmarz’s method (using

cyclic row sweep) as successive alternating projections onto some finite dimensional subspaces, an

error bound can be shown as

‖x(k+1) − x∗‖22 ≤ (1− det(A)2) ‖x(k) − x∗‖22 [Gal05]

which shows a linear convergence of the cyclic Kaczmarz’s algorithm.

The simplest randomized scheme to avoid the influence of row ordering is to choose each possible

row with equal probability 1/m. Let x∗ be the solution such that Ax∗ = b. In this case, we can

derive an expected error bound for the Kaczmarz’s method. First, by using Pythagorean theorem

(see 3.12) on the k-th and (k + 1)-th iterations, we have

‖x(k+1) − x∗‖22 = ‖x(k) − x∗‖22 − ‖x(k+1) − x(k)‖22
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Figure 3.12. Projection onto a hyperplane

Second, we compute the expectation with respect to the (k + 1)-th iteration

E‖x(k+1) − x∗‖22 = ‖x(k) − x∗‖22 − E‖x(k+1) − x(k)‖22 = ‖x(k) − x∗‖22 − E

∥∥∥∥∥bi − ri · x(k)‖ri‖22
ri

∥∥∥∥∥
2

2


= ‖x(k) − x∗‖22 − E

[
‖bi − ri · x(k)‖22

‖ri‖24
‖ri‖22

]

Since ‖ri‖22 = 1 and bi = (Ax∗)i = ri · x∗, we have

E‖x(k+1) − x∗‖22 = ‖x(k) − x∗‖22 − E
[
‖ri · x∗ − ri · x(k)‖22

]
= ‖x(k) − x∗‖22 −

m∑
i=1

1

m

∥∥∥ri · (x∗ − x(k))∥∥∥2
2

= ‖x(k) − x∗‖22 −
m∑
i=1

1

m

∥∥∥A(x(k) − x∗)
∥∥∥2
2

=

(
1− 1

m

∥∥A(x(k) − x∗)
∥∥2
2

‖x(k) − x∗‖22

)
‖x(k) − x∗‖22

Note that we did not assume our solution x∗ is unique. Indeed the above inequality holds for

any solution x∗. Furthermore, recall the definition of the 2-norm of the inverse matrix ,

for any vector v,
‖v‖2
‖Av‖2

≤ supx 6=0

‖x‖2
‖Ax‖2

:= ‖A−1‖2 ⇒
∥∥A(x(k) − x∗)

∥∥2
2

‖x(k) − x∗‖22
≥ 1

‖A−1‖22

Therefore, we arrive at a bound for the expected error

E‖x(k+1) − x∗‖22 ≤
(

1− 1

m‖A−1‖22

)
‖x(k) − x∗‖22
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which shows a linear convergence if the reduction factor ρ := 1− 1
m‖A−1‖22

is less than one.

Using ‖A‖2‖A−1‖2 ≥ ‖AA−1‖2 = ‖I‖ = 1 together with the matrix inequality ‖A‖2 ≤ ‖A‖F
where ‖A‖F :=

√∑m
i=1

∑n
j=1 a

2
ij , we have

1

‖A−1‖2
≤ ‖A‖2 ≤

√√√√ m∑
i=1

n∑
j=1

a2ij ≤
√
m ·maxi‖ri‖22 =

√
m ⇒ 0 ≤ 1

m‖A−1‖22
≤ 1

which shows that ρ < 1.

An alternative randomized Kaczmarz’s method suggested by Strohmer and Verhsynin is to

choose each row with the probability
‖ri‖22
‖A‖2F

. They arrive at the following expected error bound:

E‖x(k+1) − x∗‖22 ≤ (1− 1

R2
) ‖x(k) − x∗‖22 [SV08]

where R := ‖A‖F ‖A−1‖2 and R is closely related to the condition κ(A) := ‖A‖2‖A−1‖2. Using the

matrix inequality ‖A‖2 ≤ ‖A‖F ≤
√

rank(A)‖A‖2, this bound can rewritten as

E‖x(k+1) − x∗‖22 ≤ (1− 1

mκ(A)2
) ‖x(k) − x∗‖22

If κ is large, after k = m steps, the reduction factor is approximately (1− 1
mκ2

)m ≈ 1− 1
κ2

.

Figure 3.13. Cyclic convergence in ART, m = 3, n = 2
Source: Per Christian Hansen, Technical University of Denmark

Lastly, if the system Ax = b is inconsistent, e.g. there is no solution due to incorrect projection

values given. This is equivalent to saying that affine hyperplanes associated with the rows of A

do not intersect at a single point, or the vector b is not in the range of the matrix A. This might

lead to a cyclic convergence (see figure 3.13) where the sequence of projections on each hyperplane

converges to a point [Tan71]. To avoid this, we can consider a relaxation of algorithm (2) by adding

a relaxation parameter in step 6, i.e.x(k+1) ← x(k)+ωvi(x
(k)) with 0 < ω < 2. Choosing diminishing
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parameters such as ω = 1/k or ω = 1/
√
k, where k is the total number of row updates, the Kaczmarz

iterates are proved to converge to a single point, instead of cyclic convergence [Ber11].

3.2.3. Cimmino algorithm. In order to avoid the potential problem of row ordering, one

way is to simultaneously, instead of sequentially, involve all rows at a time. The Cimmino’s method

computes the next iteration vector as the average of all the projections of the previous iterated

vector (see 3.14). We can formulate the Cimmino’s method mathematically by using the symbols

from the Kaczmarz method in algorithm (2):

x(k+1) = x(k) +
1

m

m∑
i=1

vi(x
(k)) = x(k) +

1

m

m∑
i=1

bi − ri · x(k)
‖ri‖22

ri

Figure 3.14. Geometric interpretation of Cimmino’s method
Source: Per Christian Hansen, Technical University of Denmark

Naturally, since all rows are used, the Cimmino’s algorithm can be re-written using matrix

multiplications:

x(k+1) = x(k) +
1

m

(
r1
‖r1‖22

· · · rm
‖rm‖22

)
b1 − r1 · x(k)

...

bm − rm · x(k)



= x(k) +
1

m

(
r1

... rm

)T

‖r1‖−22

. . .

‖rm‖−22

 (
b−Ax(k)

)

= x(k) +ATM
(
b−Ax(k)

)
, where M = diag

(
1

m‖ri‖22

)
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Algorithm 3 Basic Cimmino algorithm

Input: initial vector x(0), matrix A, vector b ,and number of iteration n

Output: n− th iterated vector x(n)

1: procedure Cimmino(x(0), A, b n)

2: for k = 1→ n do

3: M ← diag( 1
m‖ri‖22

)

4: x(k+1) ← x(k) + ATM
(
b− Ax(k)

)
Clearly, one Cimmino iteration involves all rows of matrix A whereas one Kaczmarz iteration

involves only one row. Therefore, the computational cost of one Cimmino iteration is equivalent

to one sweep (m iterations) in the Kaczmarz method. In terms of convergence, there are results

showing the mathematical equivalence between the action of averaging projections in the Cimmino

method and the row-by-row action in the Kaczmarz method [Gor18].

We can illustrate the convergence of the algorithm in some simple cases. We assume A is

invertible (m = n and A has full rank) and x(0) = 0 as initial vector. We denote I as the m ×m
identity matrix, then

x(1) = ATMb, x(2) = (I −ATMA)ATMb+ATMb

So the (k + 1)-th iteration can be expressed as

x(k+1) =
k∑
i=0

(
I −ATMA

)i
ATMb

This is a geometric series of matrix. Since A is invertible, so is ATMA. Hence,

x(k+1) =

k∑
i=0

(
I −ATMA

)i
ATMb =

[
I −

(
I −ATMA

)k+1
] (
ATMA

)−1
ATMb

=
[
I −

(
I −ATMA

)k+1
]
A−1b

We can show that the largest eigenvalue of the symmetric matrix I−ATMA is strictly smaller one.

We denote the eigenvalues of the matrix ATMA with λ1 ≥ λ2 ≥ · · · ≥ λn in a decreasing order.

To see that, first, the symmetric matrix ATMA is positive definite since for any vector v,

vTATMAv = (DAv)2 > 0 where D is a diagonal matrix with D = diag
(

1√
m‖ri‖2

)
. Hence λ1 ≥

λ2 ≥ · · · ≥ λn ≥ 0 and all of them are real. Second, tr(ATMA) = 1, this implies
∑n

j=1 λj = 1.
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Combing with the first observation gives 0 < λj < 1 for all j. Therefore, all eigenvalues of I−ATMA

satisfy 0 < 1− λj < 1 and hence have magnitude strictly smaller than one.

Therefore, the geometric series converges to the identity matrix, i.e.

limk→∞

[
I −

(
I −ATMA

)k+1
]

= I,

and the iterations converge to the solution, i.e. limk→∞x
(k+1) = A−1b.

Furthermore, if matrix A is both invertible and scaled such that ‖A‖22 = m, an error bound can

be shown as

‖x(k+1) − x∗‖22 ≤ (1− 2

1 + κ2
)‖x(k) − x∗‖22 [Nes14]

This shows a linear convergence of the Cimmino’s method. Furthermore, if κ is large, the reduction

factor of one iteration in the Cimmino’s method is approximately 1− 2
κ2

, which is almost the same

reduction factor for one sweep over all rows in the (randomized) Kacmarz’s method.

There are other algorithms similar to the Cimmino’s method, which access to all rows of matrix

in one iteration. These methods form a class of technique named Simultaneous iterative reconstruc-

tion technique (SIRT). A general form of these methods involves update of the form

x(k+1) ← x(k) + ωDATM
(
b−Ax(k)

)
where ω is a relaxation parameter and D,M are both diagonal matrices. In the case of the

Cimmino’s method, D is an identity matrix, Mii = 1
m‖ri‖22

, and 0 < ω < 2
‖ATMA‖2 . In the case of

both D,M being the identity matrices and 0 < ω < 2
‖A‖2 , it becomes the Landweber algorithm,

also known as the projected gradient descent method which is commonly used in solving convex

optimization problems.

Lastly, even if the system Ax = b is inconsistent, the Cimmino’s method (with a fixed relaxation

parameter) is guaranteed to converge. Indeed, the Cimmino’s method corresponding to the gradient

descent method in solving the following weighted least square problem

arg minx∈Rn
∥∥∥M1/2(Ax− b)

∥∥∥2
2
, where M

1/2
ii =

1√
m‖ri‖2

Hence, in the case of an inconsistent linear system, the Cimmino’s iterations still converge to the

corresponding (weighted) least square solution.
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In our 3D X-ray reconstruction, we apply the Cimmino’s method. We use an open-source

MATLAB software package AIR Tool (github.com/jakobsj/AIRToolsII) [HJ18]. This package

is originally developed for two-dimensional computer tomography and we generalize the usage of

the package and apply it to solve three-dimensional problems.

3.3. 3D x-ray reconstruction of nuclear fusion hotspot using two or three lines of

sight with synthetic and experimental data

In this section, the purpose of a synthetic data study is to quantify the systematic errors in the

3D x-ray reconstruction produced in ART. Here is the procedure in our synthetic data study:

(1) We start with a synthetic 3D electron temperature (Te) distribution, use it to compute

3D synthetic x-ray emission distributions in different x-ray energy channels, and use these

distributions to generate 2D x-ray projection images along different lines of sight (LOS).

(2) We apply our ART algorithm on the 2D x-ray images to reconstruct the 3D x-ray emission

distributions.

(3) We use different metrics to compare our x-ray reconstruction with the original 3D synthetic

x-ray emission distribution derived from our Te distribution model in step (1).

We first present results from our synthetic data study of comparing x-ray reconstructions using

two versus three lines-of-sight. That include a collection of 3D synthetic x-ray emission distribu-

tions with different geometries and their reconstructions by applying ART. Then we apply our

reconstruction method on four different shots at NIF using the experimental data from N181007,

N190530, N190602, and N190730. 1

3.3.1. Generation of 2D x-ray projections. To begin with, in order to obtain our synthetic

3D x-ray emission distributions, we present two models of 3D Te distributions which resemble the

experimental data. Both models are oblate in shape. We show their 3D contour plot of 95%, 85%,

75%, and 50% respectively, with respect to the maximal x-ray emission. We also plot their central

lineouts in the x,y,z-directions (figures 3.15, 3.16). The Te in both models ranges from 2keV to 5

keV.

1The nomenclature uses NYYMMDD to indicate the exact date of an ICF experiment at NIF, where Y, M, and D
indicate the year, month, and date respectively.
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Figure 3.15. Te distribution model A with central
lineouts, Te ∈ [2keV, 5keV]

Figure 3.16. Te distribution model B with central
lineouts, Te ∈ [2keV, 5keV]

At a given temperature Te, the x-ray from free-free emission (bremsstrahlung radiance ε) of a

deuterium-tritium nuclear fusion reaction can be expressed as a function of energy hν [JBM+18],

ε(hν) ∝ exp(−hν/Te) exp(−τν)

(hν)0.39 T 0.15
e

(3.1)

where τ is the optical depth accounting for the attenuation of the x-ray emission by the fuel

and remaining ablator at stagnation. This equation implies that the lower Te is, the faster the

exponential decay of the emission over hν, see figure (3.17) in which the y-axis is in a logarithmic

scale.
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Figure 3.17. X-ray emission at different Te

Moreover, we use two different x-ray energy channels which are typically fielded in the diagnostic

setup at NIF. We list the exact filtration materials of the two energy channels, see table in figure

(3.18). They differ only by the amount of titanium. Channel 1 is a “softer” channel compared to

channel 2 since it contain less titanium and hence allows more x-ray energy to pass through and be

absorbed by an image plate inside an x-ray image detector. The system response of these channels

are obtained by multiplying the filter’s response with the response of the image plate in the image

detector. Here we choose an optical depth τ (11keV) = 1, evaluated at a photon energy of 11 keV.

Figure (3.19) show the plot of system responses of the two x-ray energy channels on the left and

the detected x-ray emissions at Te = 4keV on the right, which are the product of the x-ray emission

ε(4keV) and the corresponding system responses of channels 1 and 2.

Figure 3.18. Filtration materials of the two x-ray energy channels

In each voxel in the synthetic 3D Te model, knowing the Te in it, we can compute the x-ray

emission using the equation (3.1), multiply it with the system response curve of channel 1 (or 2),

and then integrate it over the energy spectrum hν to obtain a detected x-ray emission value ε̃. Let

ε denote the bremsstrahlung radiation calculated using equation (3.1), which is a function of both
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Figure 3.19. System response (left) and detected x-ray emission at Te = 4keV (right)

Te and hν. Also let s denote the system response of an energy channel which is a function of hν.

The mathematical expression to compute ε̃ at a given temperature Te is

ε̃(Te) =

∫
ε(Te, hν) · s(hν) d(hν)(3.2)

Using this formula, we can obtain synthetic 3D x-ray emission distributions in channels 1 and

2 for both Te models A and B. We show here the 3D contour plots of 95%, 85%, 50%, and 17%

(with respect to the maximum x-ray emission) of the x-ray distribution emissions in channel 1 for

both Te models. The x-ray distribution emissions in channel 2 are similar. We also show their

central lineouts of x-ray emission and the original Te, see figures (3.20) and (3.21). Note that the

x-ray emission distributions appear to decay much more smoothly to zero towards their periphery

because of the smoothing effect due to the exponential decay term in equation (3.1) together with

the integration over the energy spectrum, in contrast to the sharp falloffs in the Te resulted from

the restriction on the Te range.2 This observation also justifies the lower bound of Te = 2keV we

imposed on synthetic Te models A and B since x-ray emission from hotspot regions below 2keV can

hardly be detected.

We can now generate 2D x-ray projection images by summing the x-ray emission values along

different LOS. We denote the direction of our LOS inside the target chamber using the spherical

coordinate (θ, φ) on a unit sphere where 0 ≤ θ ≤ π is the polar angle and 0 ≤ φ ≤ 2π is the

2In channel 1, the detected x-ray emission at Te = 2keV has order of magnitude 1e-6 (arb. units) while the detected
x-ray emission at Te = 0keV should be 0. This difference is not noticeable in the lineouts in figures (3.20) and (3.21),
where the y-axis shown in the order of magnitude 1e-4.
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Figure 3.20. Detected x-ray emission from model A in channel 1 (left) and its
central lineouts (right)

Figure 3.21. Detected x-ray emission from model B in channel 1 (left) and its
central lineouts (right)

azimuthal angle as in the physics convention. There are three different LOS where x-ray diagnostics

are commonly fielded in experiments:

(1) (0◦, 0◦) known as PDIM 3,

(2) (90◦, 89◦) known as ARIANE 4,

(3) and (90◦, 315◦).

For the reconstruction using 2 LOS only, we will use (0◦, 0◦) and (90◦, 89◦). The LOS (90◦, 78◦),

which is different than PDIM, ARIANE, and (90◦, 315◦), used in the experimental data N181007

and N190730 will be introduced in the subsequent subsections.

In figure (3.22) we illustrate these three LOS inside the NIF target chamber (left) and the three

LOS with the synthetic 3D hotspot x-ray emission. In figures (3.27) and (3.24) we show the 2D

x-ray projections of models A and B along these three different LOS.

3Polar diagnostic instrument manipulator, refer to [Labb] for details on its construction
4Active Readout in a Neutron Environment, refer to [AFS+12], [SAB+11] for details on its experimental setup
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Figure 3.22. PDIM, ARIANE, and (90◦, 315◦) inside target chamber (left) and
with the 3D hotspot x-ray emission (right)
Source: target chamber figure (left) is taken from [TMA+17]

Figure 3.23. 2D x-ray projections of model A along PDIM, ARIANE,
and (90◦, 315◦) in channel 1

Figure 3.24. 2D x-ray projections of model B along PDIM, ARIANE,
and (90◦, 315◦) in channel 1
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Figure 3.25. Synthetic x-ray model A (left) and 3D reconstructions using 2 LOS
(middle) and 3 LOS (right)

Figure 3.26. Synthetic x-ray model B (left) and 3D reconstructions using 2 LOS
(middle) and 3 LOS (right)

3.3.2. Reconstructed 3D x-ray emission distributions in synthetic data study and

error analysis. We show the contour plots of the reconstructed 3D x-ray emission distributions

obtained from our ART algorithm using 2 LOS — PDIM and ARIANE versus 3 LOS — PDIM,

ARIANE, and (90◦, 315◦)). In comparison to using 2 LOS, the reconstruction using 3 LOS has a

shape more similar to the original model and the reconstructed maximal value is also closer to the

original x-ray maximal emission. See figures (3.25) for model A and figures (3.26) for model B.

In order to check if the 3D x-ray reconstruction is consistent with the input images, we generate

2D projections from our reconstruction along the same LOS as the input projections to the ART

algorithm. In both cases of using 2 LOS and 3 LOS, the reconstructed 2D projections look almost

identical to the original input x-ray images. This is verified by the relative errors computed per

pixel which are almost zero everywhere, see figures (3.27) and (3.28).

More importantly, we compare the central lineouts of the reconstructions using 2 LOS versus 3

LOS with the original. see figures (3.29) and (3.30) for model A and figures (3.31) and (3.32) for

model B. On one hand, the reconstruction using 2 LOS has lineouts that are similar in shape to

the synthetic models but there are discrepancies in the lineouts of the reconstructions. The relative
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Figure 3.27. Consistency of 3D reconstruction (model A in channel 1) — recon-
structed 2D projections along the same LOS as in input images

Figure 3.28. Relative errors of reconstructed 2D projections (model A in channel
1) are almost zero, colorbar from 0% to 10%

errors are roughly 20% or more in the center of the hotspot. On the other hand, the reconstruction

using 3 LOS has lineouts that look almost identical to the synthetic models. The relative errors can

be improved to below than 10% in the center of the hotspot. This shows significant improvement

in the 3D x-ray reconstruction from using 2 LOS to using 3 LOS.

Finally, note that in the reconstructions of both models A and B using 2 or 3 LOS, the relative

errors are similar in both energy channels. This observation will become very helpful in our 3D Te

measurement in the subsequent sections.

5In the first row, the two dash lines are the lineouts from the x-ray reconstructions in both channels wheras the solid
lines are from the original synthetic model. In the second row, the two lines are relative errors.
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Figure 3.29. Central lineouts of 3D x-ray reconstruction using 2 LOS (model
A) in both channels 1 and 2 and their relative errors.5

Figure 3.30. Central lineouts of 3D x-ray reconstruction using 3 LOS (model
A) in both channels 1 and 2 and their relative errors.5
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Figure 3.31. Central lineouts of 3D x-ray reconstruction using 2 LOS (model
A) in both channels 1 and 2 and their relative errors5

Figure 3.32. Central lineouts of 3D x-ray reconstruction using 3 LOS (model
A) in both channels 1 and 2 and their relative errors5
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3.3.3. X-ray reconstructions using experimental data N190602 and N190530. In this

section, we apply our ART algorithm to reconstruct 3D x-ray distributions using the experimental

data from ICF experiments N190602 and N190530 at NIF. In both experiments, we only have

2 LOS — PDIM and ARIANE, which share a similar energy channel. We list their filtration

materials in a table and plot their system response, see figure (3.38). Note that the amount of

titanium in both channels are almost the same whereas the channel at ARIANE has extra amount

of gold and diamond which are the materials from the hohlraum’s view window. Here we choose

an experimentally estimated optical depth τ (11keV) = 2, evaluated at a photon energy of 11 keV.

Figures (3.34) and (3.35) shows the experimental penumbral x-ray images taken at PDIM and

ARIANE in N190602 and N190530 respectively.

Figure 3.33. Filtration materials at PDIM and ARIANE in N190602 and N190530
(left) and system response (right)

However, in contrast to the previous synthetic data study, we need to compute the integrated x-

ray emission values of the input images along the common integrated profile (CIP), or known as the

common line of sight (CLOS), which is basically a line to which both the PDIM and ARIANE are

adjacent, see figure (3.36). The integrated x-ray emission values can be easily computed by summing

up the x-ray values per pixel of the input image onto the CIP. We observe a discrepancy between

experimental images from ARIANE and PDIM on the CIP. This discrepancy can be attributed to

a combination of the following three different factors:

(1) the neutron background noise on the image plates at both ARIANE and PDIM
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(2) harder filtration at ARIANE than at PDIM due to the presence of gold and diamond

(3) uneven shell opacity at ARIANE and PDIM

This also explains the absence of such discrepancy in the synthetic data study since we did not

model noise or opacity and we keep two energy channel filtrations the same at both ARIANE and

PDIM. Using one of our examples of 2D Sudoku puzzle illustrated in figure (3.8), we note that the

sum of the horizontal projection values 3 + 7 = 10 is equal to that of the vertical projection values

4 + 6 = 10. This suggests that our constraints in the linear system are consistent, which in turn is

crucial to the convergence of the ART algorithm since this condition implies that all hyperplanes

intersect at one solution set (recall figures 3.9 and 3.13). Therefore, we need to come up with a

method to modify the input PDIM and ARIANE images such that the integrated x-ray emissions

agree along the CIP. This can also be seen as a scaling procedure of the input image to ensure that

both images contain the same amount of energy.

The main difficulty in this image modification process is to avoid compromising the underlying

hotspot structure captured in the x-ray image. Also, we want our method to be widely applicable on

as many x-ray images as possible, independent of the hotspot geometry. The solution we suggest

is to apply a 2D ART reconstruction algorithm on the PDIM image with the line integrated profile

from the ARIANE image, see figure (3.37). In aglorithm (4), We describe our method in details as

follows:

• IPDIM is the original experimental PDIM image

• Iequat is an equatorial image , e.g. ARIANE or any LOS (90◦, φ) with 0 ≤ φ ≤ 2π

• A is the projection matrix for PDIM image towards its CIP with the equatorial image

• ε is our tolerance for the discrepancy in CIP of the PDIM and the equatorial image

• ĨPDIM is the scaled PDIM image, which has the same CIP as the equatorial image

• x(n) is the vector in the n-th iteration.

In this procedure, we use the original PDIM image as an initial guess to the 2D ART recon-

struction and we reconstruct a modified PDIM image that matches with the CIP of the equatorial

image (in this case, ARIANE).

Note that not only do the PDIM and ARIANE agree perfectly on the CIP after the 2D ART

is applied, the hotspot shape in the image is preserved and not distorted. This is de facto a 2D

reconstruction with 1 LOS, i.e. integrated x-ray emission at ARIANE.
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Algorithm 4 2D ART algorithm applied on PDIM image

Input: IPDIM, Iequat, A, and ε

Output: ĨPDIM

1: Initialize: use IPDIM as an initial guess x(0) and form vector b from image Iequat.

2: while IPDIM does not match with Iequat on CIP , i.e. ‖Ax(n+1) − b‖ > ε do

3: Perform Cimmino iteration on x(n) using A and b:

x(n+1) ← CIMMINO(x(n), A, b)

4: Generate scaled PDIM image ĨPDIM from x(n+1)

Moreover, there is a reason why we scale the PDIM image according to the ARIANE image

but not vice versa, that is, the ARIANE image generally has a much higher signal-to-noise ratio

(SNR) than the PDIM image. In order to explain this, first, we introduce the formula to compute

the SNR in the x-ray penumbral images [BCP+16]:

SNR ≈ S√
S +

(
1MeV
Ex-ray

)2
B

(3.3)

where S is the signal level, B is the background level, and the Ex-ray is the photon energy measured

in MeV.

In the NIF target chamber, the ARIANE image detector is positioned at a standoff distance of

6 meters versus PDIM at 1 meter. Therefore, the neutron background noise B on the image plat

at ARIANE goes down. At the same time, more penumbral images are available at ARIANE at

each energy channel. By averaging more images, the background noise in the image can further be

reduced. As a result of these two factors reducing B in the formula (3.3), the SNR in the ARIANE

image is higher compared to the PDIM image.

Figure (3.38) shows the contour plots of 95%, 85%, 50%, and 17% (with respect to the maximum

x-ray emission) of the x-ray reconstructions for N190602 and N190530. As for the consistency of

the 3D x-ray reconstructions to the input images, we show the reconstructed 2D projections along

PDIM and ARIANE as well as their relative errors in figure (3.39) for N190602 and in figure (3.42)

for N190530 respectively. The relative errors are almost zero in the hotspot region. This confirms

that our reconstructions are consistent to the input images. Also, we show the top and side views
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Figure 3.34. N190602 experimental x-ray images at PDIM and ARIANE with
resolution of 8 microns

Figure 3.35. N190530 experimental x-ray images at PDIM and ARIANE with
resolution of 8 microns

of the reconstructions together with their central lineouts in figures (3.40), (3.41) for N190602 and

in figures (3.43), (3.44) for N190530 respectively. Hotspots in both reconstructions are oblate in

shape. Their top and side views show a very similar shape of the hotspot in the input x-ray images.
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Figure 3.36. Discrepancy in the integrated x-ray emissions of PDIM and ARIANE
on the Common Integrated Profile (CIP)

Figure 3.37. The integrated x-ray emissions of PDIM and ARIANE on the Com-
mon Integrated Profile (CIP) are the same after the 2D ART algorithm is applied
on the PDIM image
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Figure 3.38. X-ray reconstructions for N190602 (left) and N190530 (right)

Figure 3.39. N190602 reconstructed ARIANE and PDIM projections (top row)
and relative errors compared to the input images (bottom row)
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Figure 3.40. N190602 top view of reconstruction and x,y-lineouts

Figure 3.41. N190602 side view of reconstruction and z-lineout

Figure 3.42. N190530 reconstructed ARIANE and PDIM projections (top row)
and relative errors compared to the input images (bottom row)
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Figure 3.43. N190530 top view of reconstruction and x,y-lineouts

Figure 3.44. N190530 side view of reconstruction and z-lineout
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3.3.4. X-ray reconstructions using experimental data N190730 and N181007. In this

section, we apply our ART algorithm to reconstruct 3D x-ray distributions using the experimental

data from ICF experiments N190730 and N181007 at NIF. In both experiments, we have two LOS,

namely PDIM at the pole and (90◦, 78◦) on the equator, which is a different LOS than before. There

are two different energy channels (I and II) at these two LOS with much thicker titanium than

before. We list their filtration materials in a table and plot their system response, see figure (3.45).

Since there are much more titanium in the filters and hence both channels are much stronger, we

can assume that the ablator becomes optically thin, i.e. the optical depth τ at a photon energy of

11 keV is equal to zero. Figures (3.46) and (3.47) shows the experimental penumbral x-ray images

taken at PDIM and (90◦, 78◦) in N190730 and N181007 respectively.

Note that the the x-ray images from channel I have higher x-ray emission values than that in

channel II because channel I is a softer channel with less titanium and hence it allows more x-ray

energy to pass through, as shown in its system response. More importantly, the N190730 images

suggest a globular shape hotspot whereas the N181007 images suggest a toroidal shape hotspot.

Figure 3.45. Filtration materials at (90◦, 78◦) in N190730 and N181007 (left) and
system response (right)

In both N190730 and N181007, we apply the 2D ART reconstruction algorithm on the PDIM

image to ensure that the PDIM and (90◦, 78◦) images agree with each other on the CIP. We show

both the CIP and the PDIM image before and after the 2D ART is applied, see figures (3.48) and

(3.49) for N190730 and figures (3.50) and (3.51) for N181007. The CIP of PDIM and (90◦, 78◦) in

the original input x-ray images in N190730 match pretty well, even before the 2D ART procedure.

In contrast, there are noticeable discrepancies in CIP of PDIM and (90◦, 78◦) in the original input

x-ray images in N181007, as you can see by comparing the top and the bottom rows in figure
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Figure 3.46. N190730 experimental x-ray images at PDIM and (90◦, 78◦) with
resolution of 14 microns, channel I in left column and channel II in right column

Figure 3.47. N181007 experimental x-ray images at PDIM and (90◦, 78◦) with
resolution of 14 microns, channel I in left column and channel II in right column

(3.51) that without comprising the hotspot shape in the PDIM image, the 2D ART reconstruction

algorithm matches the PDIM to the (90◦, 78◦) image on the CIP.

Figures (3.52) and (3.54) shows the contour plots of 95%, 85%, 50%, and 17% (with respect

to the maximum x-ray emission) of the x-ray reconstructions for N190730 and N181007. Despite
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some noise generated in the 3D ART algorithm on the periphery, the 3D x-ray reconstructions of

N190730 and N181007 clearly indicate a globular and a toroidal hotspot x-ray emissions respectively.

Moreover, figures (3.53) and (3.55) show the central lineouts of the x-ray reconstructions of N190730

and N181007 respectively. The central lineouts in two different channels have very similar shapes

despite the difference in the absolute x-ray emission values.

Figure 3.48. N190730 Common Integrated Profile (CIP) of PDIM and (90◦, 78◦)
images before (left) and after (right) the 2D ART reconstruction

Figure 3.49. N190730 PDIM images before (top row) and after (bottom row) 2D
ART in channels I and II; no significant changes in hotspot
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Figure 3.50. N181007 Common Integrated Profile (CIP) of PDIM and (90◦, 78◦)
images before (left) and after (right) the 2D ART reconstruction

Figure 3.51. N181007 PDIM images before (top row) and after (bottom row) 2D
ART in channels I and II; no significant changes in hotspot

As for the consistency of the 3D x-ray reconstructions to the input images, we show the recon-

structed 2D projections along PDIM and (90◦, 78◦) as well as their relative errors in figure (3.56)

for N190730 and in figure (3.57) for N181007 respectively. The relative errors are in general less

than 10% in the hotspot region. This confirms that our reconstructions are consistent to the input

images.
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Figure 3.52. N190730 x-ray reconstructions in channels I (left) and II (right)

Figure 3.53. N190730 lineouts of x-ray reconstruction in channels I and II

Figure 3.54. N181007 x-ray reconstructions in channels I (left) and II (right)
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Figure 3.55. N181007 lineouts of x-ray reconstruction in channels I and II

Figure 3.56. N190730 — reconstructed projections of PDIM and (90◦, 78◦) (left)
and their relative errors from 0 to 10% compared to the input images of the recon-
struction (right)

Figure 3.57. N181007 — reconstructed projections of PDIM and (90◦, 78◦) (left)
and their relative errors from 0 to 10% compared to the input images of the recon-
struction (right)
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3.4. 3D electron temperature measurement of nuclear fusion hotspot using 3D X-ray

reconstructions

In this section, we first outline our method of inferring the electron temperature (Te) measure-

ment from the ratio of the 3D x-ray emission distributions in different energy channels. Then we

present results from our synthetic data study of Te measurement using two versus three lines-of-

sight. Some of synthetic Te models were already introduced in the previous section. Here is the

procedure in our synthetic data study

(1) We start with a synthetic 3D Te distribution. We reconstruct the 3D x-ray emission

distributions using two (or three) lines-of-sight (LOS) in different energy channels (see

procedure in the previous section).

(2) We infer the Te from the ratio of these 3D x-ray emission distributions voxel by voxel and

generate our 3D Te measurement.

(3) We use different metrics to compare our 3D Te measurement with the original Te distri-

bution model.

Finally we apply our method on four different shots at NIF using the experimental data from

N170821, N170827, N181007, and N190730. We already showed the x-ray reconstructions from the

shots N181007 and N190730 in the previous section.

3.4.1. Te measurement from the ratio of x-ray emissions in different energy chan-

nels. To begin with, we recall the formula (3.2) for computing the detected hotspot x-ray emission

which is dependent on a Te. Given detected x-ray emissions ε̃1 and ε̃2 in two different energy

channels, we can write their ratio as a function of Te:

f(Te) :=
ε̃1(Te)

ε̃2(Te)
=

∫
ε(Te, hν) · s1(hν) d(hν)∫
ε(Te, hν) · s2(hν) d(hν)

(3.4)

where s1 and s2 are the system responses of channels 1 and 2 respectively.

Recall that we use in our synthetic data study Te models A and B in figure (3.58) together

with two different energy channels shown earlier in figures (3.18) and (3.19). We plot here in figure

(3.59) the detected x-ray emissions over a range of Te up to 10keV and their ratio as a function

of Te. We illustrate in figure (3.60) how we measure the hotspot Te by computing the ratio of the

x-ray emissions voxel by voxel in our 3D reconstructions from the previous section.
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Figure 3.58. Te models A (left) and B (right)

Figure 3.59. Detected emission in two different energy channels (left) and their
ratio (right) over Te ∈ [0.5keV, 10keV ]

3.4.2. 3D Te measurement in synthetic data study and error analysis. In practice,

there is much noise towards the periphery of the 3D x-ray reconstructions generated in the ART

reconstruction process. We also observe this along the central lineouts of the x-ray reconstructions

in figures from (3.29) to (3.32) in the previous section as the relative errors escape to infinity at the

boundary, in both cases using two or three LOS. We show in figures (3.61) and (3.62) the contour

plots of 95%, 85%, 75%, and 50% (with respect to the maximum Te) of the 3D Te measurement

of models A and B, which are computed directly from the ratio of the two x-ray reconstructions in

channels 1 and 2. The peripheral regions have significant amount of noise.
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Figure 3.60. We infer Te from the ratio of x-ray emission from reconstructions in
two different energy channels

Figure 3.61. 3D Te measure-
ment of model A

Figure 3.62. 3D Te measure-
ment of model B

Our solution to overcome this noise is to blur the Te measurement via convoluting with a 3-D

Gaussian distribution with a standard deviation σ = 4 micron. In order to ensure fair comparison

with our model, we blur the original Te model using the same 3-D Gaussian smoothing kernel.

Note that in the typical experimental data this does not degrade the inherent spatial resolution, i.e.

usually 8 to 14 microns per resolution element, significantly.
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Figure 3.63. Synthetic Te model A (left) and 3D Te measurement using 2 LOS
(middle) and 3 LOS (right); all three are blurred with σ = 4

Figure 3.64. Synthetic Te model B (left) and 3D Te measurement using 2 LOS
(middle) and 3 LOS (right); all three are blurred with σ = 4

We show both the synthetic Te model and its measurements, using 2 LOS versus 3 LOS in

the x-ray reconstructions, with the same degree of blurring in figure (3.63) for model A and figure

(3.64) for model B. It is no longer meaningful to compare the minimum Te value since the blurring

can result in arbitrarily small values in the hotspot periphery. We also plot the central lineouts of

the Te measurement using 2 LOS versus 3 LOS in figures (3.65) and (3.66).

Although the 3D Te measurement using 3 LOS in the x-ray reconstructions has a maximum

Te that is closer to the original maximum Te, the shape of its outer contour (in thise case the 50%

contour) no longer resembles that in the original model. But if we take a closer look at the Te

central lineouts, the Te measurement using 3 LOS generally has higher accuracy (lower relative

error) in the central part of the hotspot, for example look at the relative errors of the x, z-direction

lineouts of the hotspot in figures (3.65) and (3.66). More accurately, towards the boundary of the

hotspot at roughly [−50,−40] microns and [40, 50] microns, using two 2 LOS can have relative

errors as large as 40% or more whereas that using 3 LOS are below 20% and in general around

10%.
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Furthermore, we computed the weighted absolute Te error < Teerr >, in keV, to quantify the

quality of our Te measurements. The definition is simply the sum of absolute Te error from all

voxels weighted by the corresponding synthetic x-ray values:

Given the synthetic 3D Te distribution values (t1, t2, · · · , td3) in keV, where the dimension in

each direction is d. Also, given the synthetic x-ray values (x1, x2, · · · , xd3) and the reconstructed

synthetic 3D Te distribution values (t̃1, t̃2, · · · , t̃d3) in keV, we compute

< Teerr >:=

∑d3

1

∣∣ti − t̃i∣∣ · xi∑d3

1 xi

The < Teerr > are listed in the titles of the 3D Te measurements using 2 and 3 LOS in figures

(3.63) and (3.64). We can see the weighted absolute Te error in the Te measurements using 3LOS

is generally lower than that using 2 LOS, 0.094keV versus 0.26keV in model A and 0.1 keV versus

0.22keV in model B.

So, in terms of the central lineouts and the weighted absolute Te error, we can see a significant

improvement in the accuracy of our 3D Te measurement in both models A and B from using 2 LOS

to 3 LOS.
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Figure 3.65. Comparison of central lineouts of 3D Te measurement using 2
LOS versus 3LOS (model A)

Figure 3.66. Comparison of central lineouts of 3D Te measurement using 2
LOS versus 3LOS (model B)
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3.4.3. Te measurement on more Te models in synthetic data and error analysis. We

further test our 3D Te measurement method on a collection of synthetic Te distribution models

with various shapes and geometries. We select six of them, which have distinct shapes, to present

their results here. We begin by displaying and describing all the six Te models. Te models 1 to 3

have complex hotspot shape that can be described as an elongated ellipsoidal hotspot (models 1

and 3) and as a superposed ellipsoidal hotspots (model 2), whereas Te models 4 to 6 have toroidal

hotspot shapes.

For the 3D x-ray reconstructions of these models, we use the exact same two energy channels

as in the synthetic data study of models A and B, listed in figure (3.18), assuming an optical depth

τ (11keV) = 1 evaluated at a photon energy of 11 keV. The 2 LOS used are (0◦, 0◦) and (90◦, 89◦)

while the additional LOS used in the 3 LOS is (90◦, 315◦).

For each model, we present contour plots of our 3D Te measurements using 2 LOS versus 3 LOS

and the plots of central lineouts together with the relative errors of these measurements. Moreover,

both synthetic and the reconstructed Te distributions presented here are blurred using a Gaussian

smoothing kernel with the same standard deviation to eliminate the noise and at the same time to

ensure a fair comparison.

All the synthetic Te models and their 3D Te measurements using 2 LOS versus 3 LOS are shown

in the appendix (B).
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3.4.4. 3D Te measurement using experimental data N190730, N181007, N170827,

and N170821. In this section, we infer the 3D electron temperature distributions using the ex-

perimental data from ICF experiments N190730, N181007, N170827, and N170821 at NIF.

For the experiments N190730 and N181007, we described their experimental setup, presented

the x-ray images, and their corresponding 3D x-ray reconstructions in the previous section. The

2 LOS, namely PDIM and (90◦, 78◦), and the filtration materials of the two x-ray energy channels

used for the N170827 and N170821 are exactly the same as that in N190730 and N181007, as shown

in the figure (3.45). We plot below in figure (3.67) the corresponding detected x-ray emissions over

a range of Te up to 10keV and their ratio as a function of Te.

Figure 3.67. Detected emission in two experimental x-ray energy channels (left)
and their ratio (right) over Te ∈ [0.5keV, 10keV ]

N190730 — 3D Te measurement

We present the 3D Te measurement by computing the ratio of the x-ray emissions in the

reconstructions shown in figure (3.52). We show a contour plot of of 95%, 85%, 75%, and 50%

(with respect to the maximum Te, marked as a black dot) of the 3D Te measurement in figure

(3.68). Also, we plot their central lineouts at 0µm in x, y, z-directions in figure (3.69) together with

three orthogonal lineouts through the maximum Te in figure (3.70). The blue colored segments of

the lineouts are located in the central part of the hotspot.
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Figure 3.68. N190730 — 3D Te measurement

Figure 3.69. N190730 central lineouts of 3D Te measurement

Figure 3.70. N190730 lineouts through maximum Te

N181007 — 3D Te measurement

Similar to the shot N190730, we present the 3D Te measurement by using the x-ray emission

reconstructions in figure (3.54), a Te contour plot in figure (3.71), a plot of central lineouts in figure
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(3.72), and a plot of lineouts through the maximum Te in figure (3.73). Our Te measurement clearly

indicates a toroidal shape hotspot.

Figure 3.71. N181007 — 3D Te measurement

Figure 3.72. N181007 central lineouts of 3D Te measurement

Figure 3.73. N181007 lineouts through maximum Te
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N170827 — 3D Te measurement

Here we show the experimental x-ray images, the 3D x-ray reconstructions, and their central line-

outs.

Figure 3.74. N170827 experimental x-ray images at PDIM and (90◦, 78◦) with
resolution of 14 microns, channel I in left column and channel II in right column

Figure 3.75. N170827 x-ray reconstructions in channels I (left) and II (right)
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Figure 3.76. N170827 lineouts of x-ray reconstruction in channels I and II

Our 3D x-ray reconstructions are consistent to the input images. Here we show the recon-

structed 2D projections and their relative errors.

Figure 3.77. N170827 — reconstructed projections of PDIM and (90◦, 78◦) (left)
and their relative errors from 0 to 10% compared to the input images of the recon-
struction (right)

Finally we present the 3D Te measurement, a Te contour plot, a plot of central lineouts, and a

plot of lineouts through the maximum Te.
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Figure 3.78. N170827 — 3D Te measurement

Figure 3.79. N170827 central lineouts of 3D Te measurement

Figure 3.80. N170827 lineouts through maximum Te
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N170821 — 3D Te measurement

Here we show the experimental x-ray images, the 3D x-ray reconstructions, and their central line-

outs.

Figure 3.81. N170821 experimental x-ray images at PDIM and (90◦, 78◦) with
resolution of 14 microns, channel I in left column and channel II in right column

Figure 3.82. N170821 x-ray reconstructions in channels I (left) and II (right)
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Figure 3.83. N170821 lineouts of x-ray reconstruction in channels I and II

Our 3D x-ray reconstructions are consistent to the input images. Here we show the recon-

structed 2D projections and their relative errors.

Figure 3.84. N170821 — reconstructed projections of PDIM and (90◦, 78◦) (left)
and their relative errors from 0 to 10% compared to the input images of the recon-
struction (right)

Finally we present the 3D Te measurement, a Te contour plot, a plot of central lineouts, and a

plot of lineouts through the maximum Te.
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Figure 3.85. N170821 — 3D Te measurement

Figure 3.86. N170821 central lineouts of 3D Te measurement

Figure 3.87. N170821 lineouts through maximum Te

138



APPENDIX A

Mathematical derivation for formulas in chapter 1

Derivation of formula (1.6)

Given a planar triangle T with vertices vi = (xi, yi) for i = 1, 2, 3, the area of T is given by

AT =
1

2
det

 x2 − x1 y2 − y1
x3 − x1 y3 − y1



Figure A.1. Change of variable from (x, y) to (ξ, η)

We use the change of variable from (x, y) to (ξ, η), see figure (A.1), and map the triangle T to

triangle C with its vertices being (0, 0), (1, 0), (0, 1). The map can be expressed as x

y

 =

 x1

y1

 (1− ξ − η) +

 x2

y2

 ξ +

 x3

y3

 η

We compute the corresponding Jacobian:

J =
∂(x, y)

∂(ξ, η)
=

 xξ xη

yξ yη

 =

 x2 − x1 y2 − y1
x3 − x1 y3 − y1
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Therefore, the area of T is

AT =

∫
T
dxdy =

∫
C
|J | dξdη =

det(J)

2

We define hat basis B1 and B2 which are supported at vertices v1 and v2, with Bi : T → [0, 1] as

defined in (1.5). Using the linear transformation shown above, we can write down the corresponding

transformed hat basis B̃1 and B̃2, with Bi : C → [0, 1]. So we have B̃1(ξ, η) = 1−ξ−η, B̃2(ξ, η) = ξ

and hence ∫
T
B1B2 d(x, y) = |J |

∫
K
B̃1B̃2 d(ξ, η) = 2AT

∫
K
ξ − ξ2 − ξη dξdη.

We compute the integration∫ 1

0

∫ 1−ξ

0
ξ−ξ2−ξη dηdξ =

∫ 1

0
(ξ−ξ2)(1−ξ)−ξ (1− ξ)2

2
dξ =

∫ 1

0

ξ

2
−ξ2+

ξ3

2
dξ =

1

4
− 1

3
+

1

8
=

1

24
.

Therefore, ∫
T
B1B2 d(x, y) =

AT
12

As we can see in figure (1.15), the two adjacent triangles T 1
ij , T

2
ij share an edge eij = (vi, vj),

and we have two hat basis functions Bi and Bj that are supported at vi and vj respectively.

In order to compute the entries of the mass matrix D, for i ∼ j,

Dij :=

(∫
T 1
ij

+

∫
T 1
ij

)
BiBj dA =

1

12

(
AT 1

ij
+AT 2

ij

)
.

In the case of i = j, by considering the volume bound by the hat basis function, i.e.
∫
T B1B1d(x, y) =∫

T B2B2d(x, y). We have∫
T
B1B1 d(x, y) = |J |

∫ 1

0

∫ 1−ξ

0
ξ2 dη dξ =

∫ 1

0
ξ2(1− ξ) dξ =

|J |
3
− |J |

4
=
AT
6

Therefore, as we can see in figure (A.2), we sum over the one-ring region of vertex vi which are all

triangles adjacent to vertex vi

Dii =
∑
k∼i

∫
Tik

BiBidA =
∑
k∼i

2 ·ATik
12

=
1

12

∑
k∼i

(
AT 1

ik
+AT 2

ik

)
=
∑
k∼i

Dik.
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Finally, if i 6= j and vi is not adjacent to vj , the two hat basis functions Bi and Bj do not have

common intersection. Therefore

Dij =

∫
T
BiBj dA = 0

vi
vk1

vk2vk3

vk4

vk5 vk6

kj ∼ i for j = 1, 2, · · · , 6

T1

α1

β1
α2

β2

Figure A.2. Triangles Tik adjacent to vertex vi, i.e. k ∼ i

Derivation of formula (1.7)

v2 v3

v1

p1

p2

a

c b
h

h̃

γ

α

β

Figure A.3. Triangle T

Given a triangle Tas shown in figure (A.3), we define a height h as the length of a perpendicular

line from vertex v1 to the side a. Then the aspect ratio is a
h and

a

h
= cot(β) + cot(γ)
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Now we construct a hat (piecewise linear) function f := R2 → R such that f is piecewise linear

and f(v1) = 1 and f(v2) = 0 = f(v3). We define the hat function using

f(x, y) := f(x0, y0) +∇f
∣∣
(x0,y0)

· (x− x0, y − y0).

It follows directly from the definition that

∇f · (v1 − v3) = 1, ∇f · (v1 − v2) = 1.

Let f(x, y) = k1x+ k2y+ k3 ⇒ ∇f = (k1, k2, 0), so ∇f is a constant vector lying within the plane

containing the triangle. Hence we have

∇f · n = 0

The level set of f is a set of straight lines parallel to the edge e23. Since ∇f is perpendicular

to the level set, hence

∇f · (v2 − v3) = 0.

Moreover, we let eij denote the vector from vertex vi to vj and e⊥ij denote the vector eij by 90◦

counter-clockwise. So

∇f //e⊥23

Also,

1 = ∇f · (v1 − v3) = ‖∇f‖b cos(π
2
− γ) ⇒ ‖∇f‖ =

1

b sinγ
=

1

h
,

which is exactly the linear growth rate of f from 0 to 1 within h.

Combining ∇f //e⊥23, ‖∇f‖ = 1
h , and the area A = 1

2ah, we have

∇f =
e⊥23
2A

.

Therefore, ∫
T
〈∇f,∇f〉d(x, y) = A‖∇f‖2 =

A

h2
=

a

2h
=

1

2
(cot(β) + cot(γ))

A key obeservation is that there is no variable of length involved in our above derivation. So∫
T 〈∇f,∇f〉d(x, y) is conformal invariant, i.e. it remains unchanged under uniform scaling of the

triangles.
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Now for two different hat functions f1, f2 defined by f1(v1) = 1, f2(v2) = 1 and with zero

otherwise. We compute∫
T
〈∇f1,∇f2〉 d(x, y) = A〈∇f1,∇f2〉 =

〈e⊥23, e⊥13〉
4A

=
a · b · cos(π − γ)

4A
= −a · b · cosγ

2ch̃
.

As we see in figure (A.3), we have a = h̃
sinβ and b = h̃

sinα ,

∫
T
〈∇f1,∇f2〉 d(x, y) = −

(
h̃

sinβ

)
·
(

h̃
sinα

)
· cosγ

2ch̃
= − h̃cosγ

2
(
h̃cotα+ h̃cotβ

)
sinαsinβ

= − cosγ

2(cosαsinβ + sinαcosβ)

We use trigonometric formula to further simplify the expression∫
T
〈∇f1,∇f2〉 d(x, y) = − cosγ

2(sin(α+ β)
= − cosγ

2sin(π − γ)
= − cosγ

2sin(γ)

Finally we arrive at the expression∫
T
〈∇f1,∇f2〉 d(x, y) = −1

2
cot(γ)

In order to compute the entries of the stiffness matrix L, for i ∼ j:
Given two adjacent triangles T 1

ij , T
2
ij with the corresponding hat basis functions Bi, Bj , see figure

(1.15), we have

Lij =

∫
(T 1
ij∪T 2

ij)
∇Bi · ∇Bj dA = −1

2

(
cot(β1ij) + cot(β2ij)

)
For i = j, we use αk, βk as labelled in the figure (A.2),

Lii =

∫
∇Bi · ∇Bi dA =

1

2

∑
k∼i

(cot(αk) + cot(βk)) =
∑
k∼i

(
cot(αk) + cot(βk+1)

2

)
Therefore,

Lii = −
∑
k∼i

Lik

Finally, if i 6= j and vi is not adjacent to vj , the two hat basis functions Bi and Bj do not have

common intersection. Therefore

Lij = ∇Bi · ∇Bi dA = 0
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Notice that both mass matrix D and stiffness matrix L are symmetric and their diagonal entry

in each row is equal to the sum of the off-diagonal entries, i.e. matrix M := [mij ] with ∀i |mii| =∑
j 6=i |mij |.
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Existence of linear map Λ: TΦ0 7→ TΦ1

We want to prove the existence of the linear map Λ which maps orthogonal vectors ∂v1 , ∂v2 ∈ TΦ0(p)

with ∂v1 ⊥ ∂v2 to the two orthgonal vectors, ∂w1 , ∂w2 ∈ TΦ1(p) with ∂w1 ⊥ ∂w2

Proof. Without loss of generality, assume that a linear map Λ0 maps the two orthogonal

vectors ∂v1 , ∂v2 to two vectors ∂w1 , ∂w2 with an acute angle between them, says 0 < α < π
2 , as

shown in figure (A.4).

If we now rotate the vector ∂v1 to the position of ∂v2 , then ∂v2 moves −∂v1 . Since the map is

linear, ∂w1 moves to ∂w2 and ∂w2 to −∂w1 . Therefore, we obtain a new linear map Λ1 that maps

∂v1 , ∂v2 to two vectors ∂w1 , ∂w2 and the angle between ∂w1 , ∂w2 is π − α, which is larger than π
2 .

So by the intermediate value theorem, there exists a linear map (“an intermediate step between

Λ0 and Λ1”) such that the orthogonal vectors ∂v1 , ∂v2 are mapped to two orthogonal vector ∂w1 , ∂w2 .

This proves the existence of the linear map Λ.

∂v1

∂v2

∂v1, ∂v2 ∈ TΦ0(p)

∂w1

∂w2

∂w1
, ∂w2

∈ TΦ1(p)

α

Figure A.4. Tangent plane of Φ0 (left) and Φ1 (right)
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APPENDIX B

Synthetic models and their 3D electron temperature measurement

Synthetic Te model 1 and its 3D Te measurement

Figure B.1. Synthetic Te model 1 at at (30◦, 30◦) (left) and (210◦, 30◦) (right) 0

Figure B.2. 3D Te measurement using 2 LOS at (30◦, 30◦) (left) and (210◦, 30◦) (right)

Figure B.3. 3D Te measurement using 3 LOS at (30◦, 30◦) (left) and (210◦, 30◦) (right)
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Figure B.4. Comparison of central lineouts of 3D Te measurement using 2 LOS
versus 3 LOS (model 1)

Synthetic Te models 2 and its 3D Te measurements

Figure B.5. Synthetic Te model 2 at at (30◦, 30◦) (left) and (210◦, 30◦) (right) 0

Figure B.6. 3D Te measurement using 2 LOS at (30◦, 30◦) (left) and (210◦, 30◦) (right)
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Figure B.7. 3D Te measurement using 3 LOS at (30◦, 30◦) (left) and (210◦, 30◦) (right)

Figure B.8. Comparison of central lineouts of 3D Te measurement using 2 LOS
versus 3 LOS (model 2)

Synthetic Te models 3 and its 3D Te measurements

Figure B.9. Synthetic Te model 3 at at (30◦, 30◦) (left) and (210◦, 30◦) (right) 0
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Figure B.10. 3D Te measurement using 2 LOS at (30◦, 30◦) (left) and (210◦, 30◦) (right)

Figure B.11. 3D Te measurement using 3 LOS at (30◦, 30◦) (left) and (210◦, 30◦) (right)

Figure B.12. Comparison of central lineouts of 3D Te measurement using 2 LOS
versus 3 LOS (model 3)
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Synthetic Te models 4 and its 3D Te measurements

Figure B.13. Synthetic Te model 4 at at (30◦, 30◦) (left) and (0◦, 0◦) (right) 0

Figure B.14. 3D Te measurement using 2 LOS at (30◦, 30◦) (left) and (0◦, 0◦) (right)

Figure B.15. 3D Te measurement using 3 LOS at (30◦, 30◦) (left) and (0◦, 0◦) (right)
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Figure B.16. Comparison of central lineouts of 3D Te measurement using 2 LOS
versus 3 LOS (model 4)

Synthetic Te models 5 and its 3D Te measurements

Figure B.17. Synthetic Te model 5 at at (30◦, 30◦) (left) and (0◦, 0◦) (right) 0

Figure B.18. 3D Te measurement using 2 LOS at (30◦, 30◦) (left) and (0◦, 0◦) (right)

151



Figure B.19. 3D Te measurement using 3 LOS at (30◦, 30◦) (left) and (0◦, 0◦) (right)

Figure B.20. Comparison of central lineouts of 3D Te measurement using 2 LOS
versus 3 LOS (model 5)

Synthetic Te models 6 and its 3D Te measurements

Figure B.21. Synthetic Te model 6 at at (30◦, 30◦) (left) and (210◦, 30◦) (right) 0
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Figure B.22. 3D Te measurement using 2 LOS at (30◦, 30◦) (left) and (210◦, 30◦) (right)

Figure B.23. 3D Te measurement using 3 LOS at (30◦, 30◦) (left) and (210◦, 30◦) (right)

Figure B.24. Comparison of central lineouts of 3D Te measurement using 2 LOS
versus 3 LOS (model 6)

0 The view angle (θ, φ) is defined in which 0 ≤ θ ≤ 2π is the azimuth angle and −π ≤ φ ≤ π is the elevation angle.
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der, L. R. Benedetti, T. Döppner, A. Forsman, N. Izumi, S. LePape, T. Ma, A. G. MacPhee,

S. Nagel, P. Patel, B. Spears, and O. L. Landen, Resolving hot spot microstructure using x-

ray penumbral imaging (invited), Review of Scientific Instruments 87 (2016), no. 11, 11E201,

https://aip.scitation.org/doi/pdf/10.1063/1.4959161.

[Bla09] S. Blatt, A singular example for the willmore flow, Analysis 29 (2009), no. 4, 407 – 430.

[BPS15] A. I. Bobenko, U. Pinkall, and B. A. Springborn, Discrete conformal maps and ideal hyperbolic polyhedra,

Geom. Topol. 19 (2015), no. 4, 2155–2215.

[Bra92] K. A. Brakke, The surface evolver, Experimental Mathematics 1 (1992), 141–165.

[BS04] A. Bobenko and B. Springborn, Variational principles for circle patterns and koebe’s theorem, Transac-

tions of the American Mathematical Society 356 (2004).
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